Abstract

The boundedness and compactness of the integral-type operator 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∫ 𝑓 ( 𝑧 ) = 𝑧 0 𝑓 ( 𝑛 ) ( πœ‘ ( 𝜁 ) ) 𝑔 ( 𝜁 ) 𝑑 𝜁 , where 𝑛 ∈ β„• 0 , πœ‘ is a holomorphic self-map of the unit disk 𝔻 , and 𝑔 is a holomorphic function on 𝔻 , from 𝛼 -Bloch spaces to 𝑄 𝐾 spaces are characterized.

1. Introduction

Let 𝔻 be the open unit disk in the complex plane, πœ• 𝔻 be its boundary, 𝐷 ( 𝑀 , π‘Ÿ ) be disk centered at 𝑀 of radius π‘Ÿ , and let 𝐻 ( 𝔻 ) be the class of all holomorphic functions on 𝔻 . Let πœ‚ π‘Ž ( 𝑧 ) = π‘Ž βˆ’ 𝑧 1 βˆ’ π‘Ž 𝑧 , π‘Ž ∈ 𝔻 , ( 1 . 1 ) be the involutive MΓΆbius transformation which interchanges points 0 and π‘Ž . If 𝑋 is a Banach space, then by 𝐡 𝑋 we will denote the closed unit ball in 𝑋 .

The 𝛼 -Bloch space, ℬ 𝛼 ( 𝔻 ) = ℬ 𝛼 , 𝛼 > 0 , consists of all 𝑓 ∈ 𝐻 ( 𝔻 ) such that s u p 𝑧 ∈ 𝔻 ξ€· 1 βˆ’ | 𝑧 | 2 ξ€Έ 𝛼 | | | | 𝑓 β€² ( 𝑧 ) < ∞ . ( 1 . 2 ) The little 𝛼 -Bloch space ℬ 𝛼 0 ( 𝔻 ) = ℬ 𝛼 0 consists of all functions 𝑓 holomorphic on 𝔻 such that l i m | 𝑧 | β†’ 1 ( 1 βˆ’ | 𝑧 | 2 ) 𝛼 | 𝑓 β€² ( 𝑧 ) | = 0 . The norm on ℬ 𝛼 is defined by β€– 𝑓 β€– ℬ 𝛼 = | | | | 𝑓 ( 0 ) + s u p 𝑧 ∈ 𝔻 ξ€· 1 βˆ’ | 𝑧 | 2 ξ€Έ 𝛼 | | | | . 𝑓 β€² ( 𝑧 ) ( 1 . 3 ) With this norm, ℬ 𝛼 is a Banach space, and the little 𝛼 -Bloch space ℬ 𝛼 0 is a closed subspace of the 𝛼 -Bloch space. Note that ℬ 1 = ℬ is the usual Bloch space.

Given a nonnegative Lebesgue measurable function 𝐾 on ( 0 , 1 ] the space 𝑄 𝐾 consists of those 𝑓 ∈ 𝐻 ( 𝔻 ) for which 𝑏 2 𝑄 𝐾 ( 𝑓 ) = s u p π‘Ž ∈ 𝔻 ξ€œ 𝔻 | | | | 𝑓 β€² ( 𝑧 ) 2 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž ( | | 𝑧 ) 2  𝑑 π‘š ( 𝑧 ) < ∞ , ( 1 . 4 ) where 𝑑 π‘š ( 𝑧 ) = ( 1 / πœ‹ ) 𝑑 π‘₯ 𝑑 𝑦 = ( 1 / πœ‹ ) π‘Ÿ 𝑑 π‘Ÿ 𝑑 πœƒ is the normalized area measure on 𝔻 [1]. It is known that 𝑏 𝑄 𝐾 is a seminorm on 𝑄 𝐾 which is MΓΆbius invariant, that is, 𝑏 𝑄 𝐾 ( 𝑓 ∘ πœ‚ ) = 𝑏 𝑄 𝐾 ( 𝑓 ) , πœ‚ ∈ A u t ( 𝔻 ) , ( 1 . 5 ) where A u t ( 𝔻 ) is the group of all automorphisms of the unit disk 𝔻 . It is a Banach space with the norm defined by β€– 𝑓 β€– 𝑄 𝐾 = | | | | 𝑓 ( 0 ) + 𝑏 𝑄 𝐾 ( 𝑓 ) . ( 1 . 6 )

The space 𝑄 𝐾 , 0 consists of all 𝑓 ∈ 𝐻 ( 𝔻 ) such that l i m | π‘Ž | β†’ 1 ξ€œ 𝔻 | | | | 𝑓 β€² ( 𝑧 ) 2 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž ( | | 𝑧 ) 2  𝑑 π‘š ( 𝑧 ) = 0 . ( 1 . 7 ) It is known that 𝑄 𝐾 , 0 is a closed subspace of 𝑄 𝐾 . For classical 𝑄 spaces, see [2].

It is clear that each 𝑄 𝐾 contains all constant functions. If 𝑄 𝐾 consists of just constant functions, we say that it is trivial. 𝑄 𝐾 is nontrivial if and only if s u p 𝑑 ∈ ( 0 , 1 ) ξ€œ 1 0 𝐾 ( 1 βˆ’ π‘Ÿ ) ( 1 βˆ’ 𝑑 ) 2 ξ€· 1 βˆ’ 𝑑 π‘Ÿ 2 ξ€Έ 3 π‘Ÿ 𝑑 π‘Ÿ < ∞ . ( 1 . 8 ) Throughout this paper, we assume that condition (1.8) is satisfied, so that the space 𝑄 𝐾 is nontrivial. An important tool in the study of 𝑄 𝐾 spaces is the auxiliary function πœ† 𝐾 defined by πœ† 𝐾 ( 𝑠 ) = s u p 0 < 𝑑 ≀ 1 𝐾 ( 𝑠 𝑑 ) 𝐾 ( 𝑑 ) , 0 < 𝑠 < ∞ , ( 1 . 9 ) where the domain of 𝐾 is extended to ( 0 , ∞ ) by setting 𝐾 ( 𝑑 ) = 𝐾 ( 1 ) when 𝑑 > 1 . The next two conditions play important role in the study of 𝑄 𝐾 spaces. (a)There is a constant 𝐢 > 0 such that for all 𝑑 > 0 𝐾 ( 2 𝑑 ) ≀ 𝐢 𝐾 ( 𝑑 ) . ( 1 . 1 0 ) (b)The auxiliary function πœ† 𝐾 satisfies the following condition: ξ€œ 1 0 πœ† 𝐾 ( 𝑠 ) 𝑠 𝑑 𝑠 < ∞ . ( 1 . 1 1 )

Let Ω ( 0 , ∞ ) denote the class of all nondecreasing continuous functions on ( 0 , ∞ ) satisfying conditions (1.8), (1.10), and (1.11).

A positive Borel measure πœ‡ on 𝔻 is called a 𝐾 -Carleson measure [3] if s u p 𝐼 ξ€œ 𝑆 ( 𝐼 ) 𝐾 ξ‚΅ 1 βˆ’ | 𝑧 | | | 𝐼 | | ξ‚Ά 𝑑 πœ‡ ( 𝑧 ) < ∞ , ( 1 . 1 2 ) where the supermum is taken over all subarcs 𝐼 βŠ‚ πœ• 𝔻 , | 𝐼 | is the length of 𝐼 , and 𝑆 ( 𝐼 ) is the Carleson box defined by ξ‚» | | 𝐼 | | 𝑧 𝑆 ( 𝐼 ) = 𝑧 ∢ 1 βˆ’ < | 𝑧 | < 1 , ξ‚Ό . | 𝑧 | ∈ 𝐼 ( 1 . 1 3 )

A positive Borel measure πœ‡ is called a vanishing 𝐾 -Carleson measure if l i m | | 𝐼 | | β†’ 0 ξ€œ 𝑆 ( 𝐼 ) 𝐾 ξ‚΅ 1 βˆ’ | 𝑧 | | | 𝐼 | | ξ‚Ά 𝑑 πœ‡ ( 𝑧 ) = 0 . ( 1 . 1 4 )

We also need the following results of Wulan and Zhu in [3], in which 𝑄 𝐾 spaces are characterized in terms of 𝐾 -Carleson measures.

Theorem 1.1. Let 𝐾 ∈ Ξ© ( 0 , ∞ ) . Then a positive Borel measure πœ‡ on 𝔻 is a 𝐾 -Carleson measure if and only if s u p π‘Ž ∈ 𝔻 ξ€œ 𝔻 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž | | ( 𝑧 ) 2  𝑑 πœ‡ ( 𝑧 ) < ∞ . ( 1 . 1 5 ) Also, πœ‡ is a vanishing 𝐾 -Carleson measure if and only if l i m | π‘Ž | β†’ 1 ξ€œ 𝔻 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž | | ( 𝑧 ) 2  𝑑 πœ‡ ( 𝑧 ) = 0 . ( 1 . 1 6 )

From Theorem 1.1 and the definition of the spaces 𝑄 𝐾 and 𝑄 𝐾 , 0 , we see that when 𝐾 ∈ Ξ© ( 0 , ∞ ) , then 𝑓 ∈ 𝑄 𝐾 if and only if the measure 𝑑 πœ‡ 𝑓 = | 𝑓 β€² ( 𝑧 ) | 2 𝑑 π‘š ( 𝑧 ) is a 𝐾 -Carleson measure, while 𝑓 ∈ 𝑄 𝐾 , 0 if and only if this measure is a vanishing 𝐾 -Carleson measure.

Let πœ‘ ∈ 𝑆 ( 𝔻 ) be the family of all holomorphic self-maps of 𝔻 , 𝑔 ∈ 𝐻 ( 𝔻 ) , and 𝑛 ∈ β„• 0 . We define an integral-type operator as follows: 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ξ€œ 𝑓 ( 𝑧 ) = 𝑧 0 𝑓 ( 𝑛 ) ( πœ‘ ( 𝜁 ) ) 𝑔 ( 𝜁 ) 𝑑 𝜁 , 𝑧 ∈ 𝔻 . ( 1 . 1 7 ) Operator (1.17) extends several operators which has been introduced and studied recently (see, e.g., [4–9]). For related operators in 𝑛 -dimensional case, see, for example, [10–19]. For some classical operators see, for example, [20, 21] and the related references therein. For other product-type operators, see [22] and the references therein.

Motivated by [23, 24] (see also [25–29]), we characterize when πœ‘ and 𝑔 induce bounded and/or compact operators in (1.17) from 𝛼 -Bloch to 𝑄 𝐾 spaces.

Throughout this paper, constants are denoted by 𝐢 ; they are positive and not necessarily the same at each occurrence. The notation 𝐴 ≍ 𝐡 means that there is a positive constant 𝐢 such that 𝐡 / 𝐢 ≀ 𝐴 ≀ 𝐢 𝐡 .

2. Auxiliary Results

Here, we quote several lemmas which will be used in the proofs of the main results in this paper. The following lemma is folklore (see, e.g., [30]).

Lemma 2.1. For any 𝑓 ∈ 𝐻 ( 𝔻 ) and 𝑧 ∈ 𝔻 , the following inequalities hold | | | | ⎧ βŽͺ βŽͺ ⎨ βŽͺ βŽͺ ⎩ 𝑓 ( 𝑧 ) ≀ 𝐢 β€– 𝑓 β€– ℬ 𝛼 , i f β€– 0 < 𝛼 < 1 , 𝑓 β€– ℬ 𝛼 𝑒 l n 1 βˆ’ | 𝑧 | 2 , i f 𝛼 = 1 , β€– 𝑓 β€– ℬ 𝛼 ξ€· 1 βˆ’ | 𝑧 | 2 ξ€Έ 𝛼 βˆ’ 1 , i f 𝛼 > 1 , ( 2 . 1 ) | | 𝑓 ( n ) | | ( 𝑧 ) ≀ 𝐢 s u p 𝑀 ∈ 𝐷 ( 𝑧 , ( 1 βˆ’ | 𝑧 | ) / 2 ) ξ€· 1 βˆ’ | 𝑀 | 2 ξ€Έ 𝛼 | | 𝑓 ξ…ž | | ( 𝑀 ) ξ€· 1 βˆ’ | 𝑧 | 2 ξ€Έ 𝛼 + 𝑛 βˆ’ 1 ≀ 𝐢 β€– 𝑓 β€– ℬ 𝛼 ξ€· 1 βˆ’ | 𝑧 | 2 ξ€Έ 𝛼 + 𝑛 βˆ’ 1 , i f 𝑛 ∈ β„• . ( 2 . 2 )

The next lemma is obtained in [31, 32].

Lemma 2.2. Let 𝛼 > 0 . Then there are two functions 𝑓 1 , 𝑓 2 ∈ ℬ 𝛼 such that | | 𝑓 ξ…ž 1 | | + | | 𝑓 ( 𝑧 ) ξ…ž 2 | | β‰₯ 𝐢 ( 𝑧 ) ξ€· 1 βˆ’ | 𝑧 | 2 ξ€Έ 𝛼 , 𝑧 ∈ 𝔻 . ( 2 . 3 ) Also, if 𝛼 β‰  1 , then there are two functions 𝑓 3 , 𝑓 4 ∈ ℬ 𝛼 and 𝐢 > 0 , such that | | 𝑓 3 ( | | + | | 𝑓 𝑧 ) 4 ( | | β‰₯ 𝐢 𝑧 ) ξ€· 1 βˆ’ | 𝑧 | 2 ξ€Έ 𝛼 βˆ’ 1 , 𝑧 ∈ 𝔻 . ( 2 . 4 )

The next Schwartz-type lemma [33] is proved in a standard way, so we omit the proof.

Lemma 2.3. Let 𝛼 > 0 , 𝐾 ∈ Ξ© ( 0 , ∞ ) , πœ‘ ∈ 𝑆 ( 𝔻 ) , 𝑔 ∈ 𝐻 ( 𝔻 ) , and 𝑛 ∈ β„• 0 . Then 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 ( π‘œ π‘Ÿ ℬ 𝛼 0 ) β†’ 𝑄 𝐾 is compact if and only if for any bounded sequence ( 𝑓 π‘š ) π‘š ∈ β„• in ℬ 𝛼 converging to zero on compacts of 𝔻 , we have l i m π‘š β†’ ∞ β€– 𝐼 ( 𝑛 ) πœ‘ , 𝑔 𝑓 π‘š β€– 𝑄 𝐾 = 0 .

Lemma 2.4. Let 𝛼 > 0 , 𝐾 ∈ Ξ© ( 0 , ∞ ) , πœ‘ ∈ 𝑆 ( 𝔻 ) , 𝑔 ∈ 𝐻 ( 𝔻 ) , and 𝑛 ∈ β„• 0 . Then 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 0 β†’ 𝑄 𝐾 ( π‘œ π‘Ÿ 𝑄 𝐾 , 0 ) is weakly compact if and only if it is compact.

Proof. By a known theorem 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 0 β†’ 𝑄 𝐾 ( o r 𝑄 𝐾 , 0 ) is weakly compact if and only if ( 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ) βˆ— ∢ 𝑄 βˆ— 𝐾 ( o r 𝑄 βˆ— 𝐾 , 0 ) β†’ ( ℬ 𝛼 0 ) βˆ— is weakly compact. Since ( ℬ 𝛼 0 ) βˆ— β‰… 𝐴 1 (the Bergman space) and 𝐴 1 has the Schur property, it follows that it is equivalent to ( 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ) βˆ— ∢ 𝑄 βˆ— 𝐾 ( o r 𝑄 βˆ— 𝐾 , 0 ) β†’ ( ℬ 𝛼 0 ) βˆ— , is compact, which is equivalent to 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 0 β†’ 𝑄 𝐾 ( o r 𝑄 𝐾 , 0 ) , is compact, as claimed.

Lemma 2.5. Let 𝛼 > 0 , 𝐾 ∈ Ξ© ( 0 , ∞ ) , πœ‘ ∈ 𝑆 ( 𝔻 ) , 𝑔 ∈ 𝐻 ( 𝔻 ) , and 𝑛 ∈ β„• 0 . Then 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 0 β†’ 𝑄 𝐾 , 0 is compact if and only if 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 β†’ 𝑄 𝐾 , 0 is bounded.

Proof. By Lemma 2.4, 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 0 β†’ 𝑄 𝐾 , 0 is compact if and only if it is weakly compact, which, by Gantmacher's theorem ([34]), is equivalent to ( 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ) βˆ— βˆ— ( ( ℬ 𝛼 0 ) βˆ— βˆ— ) βŠ† 𝑄 𝐾 , 0 . Since ( ℬ 𝛼 0 ) βˆ— βˆ— = ℬ 𝛼 and by a standard duality argument ( 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ) βˆ— βˆ— = 𝐼 ( 𝑛 ) πœ‘ , 𝑔 on ℬ 𝛼 , this can be written as 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ( ℬ 𝛼 ) βŠ† 𝑄 𝐾 , 0 , which by the closed graph theorem is equivalent to 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 β†’ 𝑄 𝐾 , 0 is bounded.

For π‘Ž ∈ 𝔻 , set Ξ¦ πœ‘ , 𝑔 , 𝐾 ( ξ€œ π‘Ž ) = 𝔻 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž ( | | 𝑧 ) 2  | | | | 𝑔 ( 𝑧 ) 2 ξ‚€ | | | | 1 βˆ’ πœ‘ ( 𝑧 ) 2  2 ( 1 βˆ’ 𝛼 βˆ’ 𝑛 ) 𝑑 π‘š ( 𝑧 ) . ( 2 . 5 )

Lemma 2.6. Let 𝛼 > 0 , 𝐾 ∈ Ξ© ( 0 , ∞ ) , πœ‘ ∈ 𝑆 ( 𝔻 ) , 𝑔 ∈ 𝐻 ( 𝔻 ) , and 𝑛 ∈ β„• 0 . If Ξ¦ πœ‘ , 𝑔 , 𝐾 is finite at some point π‘Ž ∈ 𝔻 , then it is continuous on 𝔻 .

Proof. We follow the lines of Lemma  2.3 in [24]. From the elementary inequality ξ€· | | π‘Ž ( 1 βˆ’ | π‘Ž | ) 1 βˆ’ 1 | | ξ€Έ 4 ≀ | | πœ‚ 1 βˆ’ π‘Ž | | ( 𝑧 ) 2 | | πœ‚ 1 βˆ’ π‘Ž 1 ( | | 𝑧 ) 2 ≀ 4 ξ€· | | π‘Ž ( 1 βˆ’ | π‘Ž | ) 1 βˆ’ 1 | | ξ€Έ , π‘Ž , π‘Ž 1 , 𝑧 ∈ 𝔻 , ( 2 . 6 ) and since 𝐾 is nondecreasing and satisfies (1.10), we easily get 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž 1 | | ( 𝑧 ) 2  ≀ 𝐢 [ l o g 2 ( 4 / ( 1 βˆ’ | π‘Ž | ) ( 1 βˆ’ | π‘Ž 1 | ) ) ] + 1 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž | | ( 𝑧 ) 2  . ( 2 . 7 ) From (2.7) and since Ξ¦ πœ‘ , 𝑔 , 𝐾 ( π‘Ž ) is finite, it follows that Ξ¦ πœ‘ , 𝑔 , 𝐾 is finite at each point π‘Ž 1 ∈ 𝔻 . Let π‘Ž ∈ 𝔻 be fixed, and let ( π‘Ž 𝑙 ) 𝑙 ∈ β„• βŠ‚ 𝔻 be a sequence converging to π‘Ž .
We have | | Ξ¦ πœ‘ , 𝑔 , 𝐾 ( π‘Ž ) βˆ’ Ξ¦ πœ‘ , 𝑔 , 𝐾 ξ€· π‘Ž 𝑙 ξ€Έ | | ≀ ξ€œ 𝔻 | | | | 𝑔 ( 𝑧 ) 2 | | | 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž | | ( 𝑧 ) 2  ξ‚€ | | πœ‚ βˆ’ 𝐾 1 βˆ’ π‘Ž 𝑙 | | ( 𝑧 ) 2  | | | ξ‚€ | | | | 1 βˆ’ πœ‘ ( 𝑧 ) 2  2 ( 𝛼 + 𝑛 βˆ’ 1 ) 𝑑 π‘š ( 𝑧 ) . ( 2 . 8 ) From (2.6), we have that for 𝑙 such that 1 βˆ’ | π‘Ž 𝑙 | β‰₯ ( 1 βˆ’ | π‘Ž | ) / 2 , say 𝑙 β‰₯ 𝑙 0 , holds | | πœ‚ 1 βˆ’ π‘Ž 𝑙 | | ( 𝑧 ) 2 ≀ 8 ( 1 βˆ’ | π‘Ž | ) 2 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž | | ( 𝑧 ) 2  , ( 2 . 9 ) and consequently for 𝑙 β‰₯ 𝑙 0 , it holds | | | 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž | | ( 𝑧 ) 2  ξ‚€ | | πœ‚ βˆ’ 𝐾 1 βˆ’ π‘Ž 𝑙 | | ( 𝑧 ) 2  | | | ≀ ξ‚€ 1 + 𝐢 [ l o g 2 ( 8 / ( 1 βˆ’ | π‘Ž | ) 2 ) ] + 1  𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž | | ( 𝑧 ) 2  . ( 2 . 1 0 )
From this and since Ξ¦ πœ‘ , 𝑔 , 𝐾 is finite at π‘Ž , by the Lebesgue dominated convergence theorem, we get that the integral in (2.8) converges to zero as 𝑙 β†’ ∞ which implies that Ξ¦ πœ‘ , 𝑔 , 𝐾 ( π‘Ž 𝑙 ) β†’ Ξ¦ πœ‘ , 𝑔 , 𝐾 ( π‘Ž ) as 𝑙 β†’ ∞ , from which the lemma follows.

3. Boundedness and Compactness of 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 ( o r ℬ 𝛼 0 ) β†’ 𝑄 𝐾 ( o r 𝑄 𝐾 , 0 )

In this section, we characterize the boundedness and compactness of the operators 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 ( o r ℬ 𝛼 0 ) β†’ 𝑄 𝐾 ( o r 𝑄 𝐾 , 0 ) . Let 𝑑 πœ‡ πœ‘ , 𝑔 , 𝑛 , 𝛼 | | | | ( 𝑧 ) = 𝑔 ( 𝑧 ) 2 ξ‚€ | | | | 1 βˆ’ πœ‘ ( 𝑧 ) 2  2 ( 1 βˆ’ 𝛼 βˆ’ 𝑛 ) 𝑑 π‘š ( 𝑧 ) . ( 3 . 1 )

Theorem 3.1. Let 𝛼 > 0 , 𝐾 ∈ Ξ© ( 0 , ∞ ) , πœ‘ ∈ 𝑆 ( 𝔻 ) , 𝑔 ∈ 𝐻 ( 𝔻 ) , and 𝑛 ∈ β„• , or 𝑛 = 0 and 𝛼 > 1 . Then the following statements are equivalent. (a) 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 β†’ 𝑄 𝐾 is bounded. (b) 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 0 β†’ 𝑄 𝐾 is bounded. (c) 𝑀 ∢ = s u p π‘Ž ∈ 𝔻 ∫ 𝔻 𝐾 ( 1 βˆ’ | πœ‚ π‘Ž ( 𝑧 ) | 2 ) | 𝑔 ( 𝑧 ) | 2 ( 1 βˆ’ | πœ‘ ( 𝑧 ) | 2 ) 2 ( 1 βˆ’ 𝛼 βˆ’ 𝑛 ) 𝑑 π‘š ( 𝑧 ) < ∞ . (d) 𝑑 πœ‡ πœ‘ , 𝑔 , 𝑛 , 𝛼 ( 𝑧 ) is a 𝐾 -Carleson measure. Moreover, if 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 β†’ 𝑄 𝐾 is bounded, then the next asymptotic relations hold β€– β€– 𝐼 ( 𝑛 ) πœ‘ , 𝑔 β€– β€– ℬ 𝛼 β†’ 𝑄 𝐾 ≍ β€– β€– 𝐼 ( 𝑛 ) πœ‘ , 𝑔 β€– β€– ℬ 𝛼 0 β†’ 𝑄 𝐾 ≍ 𝑀 1 / 2 . ( 3 . 2 )

Proof. By Theorem 1.1, it is clear that (c) and (d) are equivalent.
(c) β‡’ (a). Let 𝑓 ∈ 𝐡 ℬ 𝛼 . First note that 𝐼 ( 𝑛 ) πœ‘ , 𝑔 𝑓 ( 0 ) = 0 for each 𝑓 ∈ 𝐻 ( 𝔹 ) and 𝑛 ∈ β„• 0 . From this and by Lemma 2.1, we have β€– β€– 𝐼 ( 𝑛 ) πœ‘ , 𝑔 𝑓 β€– β€– 2 𝑄 𝐾 = s u p π‘Ž ∈ 𝔻 ξ€œ 𝔻 | | | ξ‚€ 𝐼 ( 𝑛 ) πœ‘ , 𝑔 𝑓  | | | β€² ( 𝑧 ) 2 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž | | ( 𝑧 ) 2  𝑑 π‘š ( 𝑧 ) = s u p π‘Ž ∈ 𝔻 ξ€œ 𝔻 | | 𝑓 ( 𝑛 ) | | ( πœ‘ ( 𝑧 ) ) 2 | | | | 𝑔 ( 𝑧 ) 2 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž | | ( 𝑧 ) 2  𝑑 π‘š ( 𝑧 ) ≀ 𝐢 β€– 𝑓 β€– 2 ℬ 𝛼 s u p π‘Ž ∈ 𝔻 ξ€œ 𝔻 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž | | ( 𝑧 ) 2  | | | | 𝑔 ( 𝑧 ) 2 ξ‚€ | | | | 1 βˆ’ πœ‘ ( 𝑧 ) 2  2 ( 1 βˆ’ 𝛼 βˆ’ 𝑛 ) 𝑑 π‘š ( 𝑧 ) , ( 3 . 3 ) from which the boundedness of 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 β†’ 𝑄 𝐾 follows, and moreover β€– β€– 𝐼 ( 𝑛 ) πœ‘ , 𝑔 β€– β€– ℬ 𝛼 β†’ 𝑄 𝐾 ≀ 𝐢 𝑀 1 / 2 . ( 3 . 4 )
( a ) β‡’ ( b ) . This implication is obvious.
( b ) β‡’ ( c ) . By Lemma 2.2, if 𝑛 ∈ β„• , there are two functions 𝑓 1 , 𝑓 2 ∈ ℬ 𝛼 such that (2.3) holds, and if 𝑛 = 0 and 𝛼 > 1 such that (2.4) holds. Let β„Ž 1 ( 𝑧 ) = 𝑓 1 ( 𝑧 ) βˆ’ 𝑛 βˆ’ 1  π‘˜ = 1 𝑓 1 ( π‘˜ ) ( 0 ) 𝑧 π‘˜ ! π‘˜ , β„Ž 2 ( 𝑧 ) = 𝑓 2 ( 𝑧 ) βˆ’ 𝑛 βˆ’ 1  π‘˜ = 1 𝑓 2 ( π‘˜ ) ( 0 ) 𝑧 π‘˜ ! π‘˜ . ( 3 . 5 ) It is known (see [30]) that for each 𝑓 ∈ 𝐻 ( 𝔻 ) and 𝑛 ∈ β„• , we have ξ€· 1 βˆ’ | 𝑧 | 2 ξ€Έ 𝛼 + 𝑛 βˆ’ 1 | | 𝑓 ( 𝑛 ) | | + ( 𝑧 ) 𝑛 βˆ’ 1  π‘˜ = 1 | | 𝑓 ( π‘˜ ) | | ≍ ξ€· ( 0 ) 1 βˆ’ | 𝑧 | 2 ξ€Έ 𝛼 | | 𝑓 ξ…ž | | . ( 𝑧 ) ( 3 . 6 )
From this, Lemma 2.2, and since β„Ž 1 ( π‘˜ ) ( 0 ) = β„Ž 2 ( π‘˜ ) ( 0 ) = 0 , π‘˜ = 0 , 1 , … , 𝑛 βˆ’ 1 , we have that there is a 𝛿 > 0 such that 𝐢 ξ€· 1 βˆ’ | 𝑧 | 2 ξ€Έ βˆ’ ( 𝛼 + 𝑛 βˆ’ 1 ) ≀ | | β„Ž 1 ( 𝑛 ) | | + | | β„Ž ( 𝑧 ) 2 ( 𝑛 ) | | , ( 𝑧 ) f o r | 𝑧 | > 𝛿 . ( 3 . 7 ) Now note that for any 𝑓 ∈ ℬ 𝛼 , the functions 𝑓 π‘Ÿ ( 𝑧 ) = 𝑓 ( π‘Ÿ 𝑧 ) , π‘Ÿ ∈ ( 0 , 1 ) belong to ℬ 𝛼 , and moreover, s u p 0 < π‘Ÿ < 1 β€– 𝑓 π‘Ÿ β€– ℬ 𝛼 ≀ β€– 𝑓 β€– ℬ 𝛼 .
Applying (3.7), using an elementary inequality, the boundedness of 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 0 β†’ 𝑄 𝐾 , and the last inequality, we obtain ξ€œ | π‘Ÿ πœ‘ ( 𝑧 ) | > 𝛿 π‘Ÿ 2 𝑛 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž ( | | 𝑧 ) 2  | | | | 𝑔 ( 𝑧 ) 2 ξ‚€ ξ€· π‘Ÿ | | | | ξ€Έ 1 βˆ’ πœ‘ ( 𝑧 ) 2  2 ( 1 βˆ’ 𝛼 βˆ’ 𝑛 ) ξ€œ 𝑑 π‘š ( 𝑧 ) ≀ 𝐢 𝔻 π‘Ÿ 2 𝑛 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž | | ( 𝑧 ) 2  | | 𝑔 | | ( 𝑧 ) 2 ξ‚€ | | β„Ž 1 ( 𝑛 ) | | ( π‘Ÿ πœ‘ ( 𝑧 ) ) 2 + | | β„Ž 2 ( 𝑛 ) | | ( π‘Ÿ πœ‘ ( 𝑧 ) ) 2  ξ€œ 𝑑 π‘š ( 𝑧 ) = 𝐢 𝔻 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž | | ( 𝑧 ) 2  | | | ξ‚€ 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ξ€· β„Ž 1 ξ€Έ π‘Ÿ  ξ…ž | | | ( 𝑧 ) 2 ξ€œ 𝑑 π‘š ( 𝑧 ) + 𝐢 𝔻 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž | | ( 𝑧 ) 2  | | | ξ‚€ 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ξ€· β„Ž 2 ξ€Έ π‘Ÿ  ξ…ž | | | ( 𝑧 ) 2 ≀ β€– β€– 𝐼 𝑑 π‘š ( 𝑧 ) ( 𝑛 ) πœ‘ , 𝑔 β€– β€– 2 ℬ 𝛼 0 β†’ 𝑄 𝐾 ξ‚€ β€– β€– β„Ž 1 β€– β€– 2 ℬ 𝛼 + β€– β€– β„Ž 2 β€– β€– 2 ℬ 𝛼  . ( 3 . 8 ) Letting π‘Ÿ β†’ 1 in (3.8) and using the monotone convergence theorem, we get ξ€œ | | | | πœ‘ ( 𝑧 ) > 𝛿 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž ( | | 𝑧 ) 2  | | | | 𝑔 ( 𝑧 ) 2 ξ‚€ | | | | 1 βˆ’ πœ‘ ( 𝑧 ) 2  2 ( 1 βˆ’ 𝛼 βˆ’ 𝑛 ) β€– β€– 𝐼 𝑑 π‘š ( 𝑧 ) ≀ 𝐢 ( 𝑛 ) πœ‘ , 𝑔 β€– β€– 2 ℬ 𝛼 0 β†’ 𝑄 𝐾 . ( 3 . 9 ) On the other hand, for 𝑓 0 ( 𝑧 ) = 𝑧 𝑛 / 𝑛 ! ∈ ℬ 𝛼 0 , we get 𝐼 ( 𝑛 ) πœ‘ , 𝑔 𝑓 0 ∈ 𝑄 𝐾 which implies s u p 𝛼 ∈ 𝔻 ξ€œ | | | | πœ‘ ( 𝑧 ) ≀ 𝛿 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž | | ( 𝑧 ) 2  | | | | 𝑔 ( 𝑧 ) 2 ξ‚€ | | | | 1 βˆ’ πœ‘ ( 𝑧 ) 2  2 ( 1 βˆ’ 𝛼 βˆ’ 𝑛 ) β€– β€– 𝐼 𝑑 π‘š ( 𝑧 ) ≀ ( 𝑛 ) πœ‘ , 𝑔 β€– β€– 2 ℬ 𝛼 0 β†’ 𝑄 𝐾 β€– β€– 𝑓 0 β€– β€– 2 ℬ 𝛼 ξ€· 1 βˆ’ 𝛿 2 ξ€Έ 2 ( 𝛼 + 𝑛 βˆ’ 1 ) . ( 3 . 1 0 ) From (3.9) and (3.10), (c) follows. Moreover we get 𝑀 1 / 2 ≀ 𝐢 β€– 𝐼 ( 𝑛 ) πœ‘ , 𝑔 β€– ℬ 𝛼 0 β†’ 𝑄 𝐾 . From this, (3.4) and since β€– 𝐼 ( 𝑛 ) πœ‘ , 𝑔 β€– ℬ 𝛼 0 β†’ 𝑄 𝐾 ≀ β€– 𝐼 ( 𝑛 ) πœ‘ , 𝑔 β€– ℬ 𝛼 β†’ 𝑄 𝐾 the asymptotic relations in (3.2) follow, finishing the proof of the theorem.

Theorem 3.2. Let 𝛼 > 0 , 𝐾 ∈ Ξ© ( 0 , ∞ ) , πœ‘ ∈ 𝑆 ( 𝔻 ) , 𝑔 ∈ 𝐻 ( 𝔻 ) , and 𝑛 ∈ β„• , or 𝑛 = 0 and 𝛼 > 1 . Let 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 β†’ 𝑄 𝐾 be bounded. Then the following statements are equivalent. (a) 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 β†’ 𝑄 𝐾 is compact. (b) 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 0 β†’ 𝑄 𝐾 is compact. (c) 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 0 β†’ 𝑄 𝐾 is weakly compact. (d) s u p π‘Ž ∈ 𝔻 ∫ 𝔻 𝐾 ( 1 βˆ’ | πœ‚ π‘Ž ( 𝑧 ) | 2 ) | 𝑔 ( 𝑧 ) | 2 𝑑 π‘š ( 𝑧 ) < ∞ , and l i m π‘Ÿ β†’ 1 s u p π‘Ž ∈ 𝔻 ξ€œ | πœ‘ ( 𝑧 ) | > π‘Ÿ 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž ( | | 𝑧 ) 2  | | | | 𝑔 ( 𝑧 ) 2 ξ‚€ | | | | 1 βˆ’ πœ‘ ( 𝑧 ) 2  2 ( 1 βˆ’ 𝛼 βˆ’ 𝑛 ) 𝑑 π‘š ( 𝑧 ) = 0 . ( 3 . 1 1 )

Proof. By Lemma 2.4, we have that (b) is equivalent to (c).
(d) β‡’ (a). Let ( 𝑓 𝑙 ) 𝑙 ∈ β„• be a bounded sequence in ℬ 𝛼 , say by 𝐿 , converging to zero uniformly on compacts of 𝔻 . Then 𝑓 𝑙 ( 𝑛 ) also converges to zero uniformly on compacts of 𝔻 . From (3.11) we have that for every πœ€ > 0 there is an π‘Ÿ 1 ∈ ( 0 , 1 ) such that for π‘Ÿ ∈ ( π‘Ÿ 1 , 1 ) s u p π‘Ž ∈ 𝔻 ξ€œ | πœ‘ ( 𝑧 ) | > π‘Ÿ 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž ( | | 𝑧 ) 2  | | | | 𝑔 ( 𝑧 ) 2 ξ‚€ | | | | 1 βˆ’ πœ‘ ( 𝑧 ) 2  2 ( 1 βˆ’ 𝛼 βˆ’ 𝑛 ) 𝑑 π‘š ( 𝑧 ) < πœ€ . ( 3 . 1 2 ) Therefore, by Lemma 2.1 and (3.12), we have that for π‘Ÿ ∈ ( π‘Ÿ 1 , 1 ) β€– β€– 𝐼 ( 𝑛 ) πœ‘ , 𝑔 𝑓 𝑙 β€– β€– 2 𝑄 𝐾 = ξ‚΅ ξ€œ | πœ‘ ( 𝑧 ) | ≀ π‘Ÿ + ξ€œ | πœ‘ ( 𝑧 ) | > π‘Ÿ ξ‚Ά | | 𝑓 𝑙 ( 𝑛 ) | | ( πœ‘ ( 𝑧 ) ) 2 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž | | ( 𝑧 ) 2  | | | | 𝑔 ( 𝑧 ) 2 𝑑 π‘š ( 𝑧 ) < s u p | | | | πœ‘ ( 𝑧 ) ≀ π‘Ÿ | | 𝑓 𝑙 ( 𝑛 ) | | ( πœ‘ ( 𝑧 ) ) 2 ξ€œ 𝔻 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž | | ( 𝑧 ) 2  | | | | 𝑔 ( 𝑧 ) 2 𝑑 π‘š ( 𝑧 ) + 𝐢 𝐿 2 πœ€ . ( 3 . 1 3 ) Letting 𝑙 β†’ ∞ in (3.13), using the first condition in (d) and s u p | 𝑀 | ≀ π‘Ÿ | 𝑓 𝑙 ( 𝑛 ) ( 𝑀 ) | β†’ 0 as 𝑙 β†’ ∞ , it follows that l i m 𝑙 β†’ ∞ β€– 𝐼 ( 𝑛 ) πœ‘ , 𝑔 𝑓 𝑙 β€– 𝑄 𝐾 = 0 . Thus, by Lemma 2.3, 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 β†’ 𝑄 𝐾 is compact.
(a) β‡’ (b). The implication is trivial since ℬ 𝛼 0 βŠ‚ ℬ 𝛼 .
(b) β‡’ (d). By choosing 𝑓 ( 𝑧 ) = 𝑧 𝑛 / 𝑛 ! ∈ ℬ 𝛼 0 , 𝑛 ∈ β„• 0 , we have that the first condition in (d) holds. Let 𝑓 𝑙 ( 𝑧 ) = 𝑧 𝑙 / 𝑙 , 𝑙 ∈ β„• . It is easy to see that ( 𝑓 𝑙 ) 𝑙 ∈ β„• is a bounded sequence in ℬ 𝛼 0 converging to zero uniformly on compacts of 𝔻 . Hence, by Lemma 2.3, it follows that β€– 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ( 𝑓 𝑙 ) β€– 𝑄 𝐾 β†’ 0 as 𝑙 β†’ ∞ . Thus, for every πœ€ > 0 , there is an 𝑙 0 ∈ β„• , 𝑙 0 > 𝑛 such that for 𝑙 β‰₯ 𝑙 0  𝑛 βˆ’ 1  𝑗 = 1 ξƒͺ ( 𝑙 βˆ’ 𝑗 ) 2 s u p π‘Ž ∈ 𝔻 ξ€œ 𝔻 | | | | πœ‘ ( 𝑧 ) 2 ( 𝑙 βˆ’ 𝑛 ) 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž | | ( 𝑧 ) 2  | | | | 𝑔 ( 𝑧 ) 2 𝑑 π‘š ( 𝑧 ) < πœ€ . ( 3 . 1 4 ) From (3.14) we have that for each π‘Ÿ ∈ ( 0 , 1 ) and 𝑙 β‰₯ 𝑙 0 π‘Ÿ 2 ( 𝑙 βˆ’ 𝑛 )  𝑛 βˆ’ 1  𝑗 = 1 ξƒͺ ( 𝑙 βˆ’ 𝑗 ) 2 s u p π‘Ž ∈ 𝔻 ξ€œ | πœ‘ ( 𝑧 ) | > π‘Ÿ 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž | | ( 𝑧 ) 2  | | | | 𝑔 ( 𝑧 ) 2 𝑑 π‘š ( 𝑧 ) < πœ€ . ( 3 . 1 5 ) Hence, for ∏ π‘Ÿ ∈ [ ( 𝑛 βˆ’ 1 𝑗 = 1 ( 𝑙 0 βˆ’ 𝑗 ) ) βˆ’ 1 / ( 𝑙 0 βˆ’ 𝑛 ) , 1 ) , we have that s u p π‘Ž ∈ 𝔻 ξ€œ | | | | πœ‘ ( 𝑧 ) > π‘Ÿ 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž ( | | 𝑧 ) 2  | | | | 𝑔 ( 𝑧 ) 2 𝑑 π‘š ( 𝑧 ) < πœ€ . ( 3 . 1 6 )
Let 𝑓 ∈ 𝐡 ℬ 𝛼 0 , and let 𝑓 𝑑 ( 𝑧 ) = 𝑓 ( 𝑑 𝑧 ) , 0 < 𝑑 < 1 . Then s u p 0 < 𝑑 < 1 β€– 𝑓 𝑑 β€– ℬ 𝛼 ≀ β€– 𝑓 β€– ℬ 𝛼 , 𝑓 𝑑 ∈ ℬ 𝛼 0 , 𝑑 ∈ ( 0 , 1 ) , and 𝑓 𝑑 β†’ 𝑓 uniformly on compact subsets of 𝔻 as 𝑑 β†’ 1 . The compactness of 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 0 β†’ 𝑄 𝐾 implies l i m 𝑑 β†’ 1 β€– β€– 𝐼 ( 𝑛 ) πœ‘ , 𝑔 𝑓 𝑑 βˆ’ 𝐼 ( 𝑛 ) πœ‘ , 𝑔 𝑓 β€– β€– 𝑄 𝐾 = 0 . ( 3 . 1 7 ) Hence, for every πœ€ > 0 , there is a 𝑑 ∈ ( 0 , 1 ) such that s u p π‘Ž ∈ 𝔻 ξ€œ 𝔻 | | 𝑓 𝑑 ( 𝑛 ) ( πœ‘ ( 𝑧 ) ) βˆ’ 𝑓 ( 𝑛 ) ( | | πœ‘ ( 𝑧 ) ) 2 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž ( | | 𝑧 ) 2  | | | | 𝑔 ( 𝑧 ) 2 𝑑 π‘š ( 𝑧 ) < πœ€ . ( 3 . 1 8 )
From this and (3.16), we have that for such 𝑑 and each ∏ π‘Ÿ ∈ [ ( 𝑛 βˆ’ 1 𝑗 = 1 ( 𝑙 0 βˆ’ 𝑗 ) ) βˆ’ 1 / ( 𝑙 0 βˆ’ 𝑛 ) , 1 ) s u p π‘Ž ∈ 𝔻 ξ€œ | | | | πœ‘ ( 𝑧 ) > π‘Ÿ | | 𝑓 ( 𝑛 ) ( | | πœ‘ ( 𝑧 ) ) 2 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž ( | | 𝑧 ) 2  | | | | 𝑔 ( 𝑧 ) 2 𝑑 π‘š ( 𝑧 ) ≀ 2 s u p π‘Ž ∈ 𝔻 ξ€œ | πœ‘ ( 𝑧 ) | > π‘Ÿ | | 𝑓 𝑑 ( 𝑛 ) ( πœ‘ ( 𝑧 ) ) βˆ’ 𝑓 ( 𝑛 ) | | ( πœ‘ ( 𝑧 ) ) 2 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž | | ( 𝑧 ) 2  | | 𝑔 | | ( 𝑧 ) 2 𝑑 π‘š ( 𝑧 ) + 2 s u p π‘Ž ∈ 𝔻 ξ€œ | πœ‘ ( 𝑧 ) | > π‘Ÿ | | 𝑓 𝑑 ( 𝑛 ) ( | | πœ‘ ( 𝑧 ) ) 2 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž ( | | 𝑧 ) 2  | | | | 𝑔 ( 𝑧 ) 2 ξ‚€ β€– β€– 𝑓 𝑑 π‘š ( 𝑧 ) < 2 πœ€ 1 + 𝑑 ( 𝑛 ) β€– β€– 2 ∞  . ( 3 . 1 9 ) From (3.19) we conclude that for every 𝑓 ∈ 𝐡 ℬ 𝛼 0 , there is a 𝛿 0 ∈ ( 0 , 1 ) and 𝛿 0 = 𝛿 0 ( 𝑓 , πœ€ ) such that for π‘Ÿ ∈ ( 𝛿 0 , 1 ) s u p π‘Ž ∈ 𝔻 ξ€œ | | | | πœ‘ ( 𝑧 ) > π‘Ÿ | | 𝑓 ( 𝑛 ) ( | | πœ‘ ( 𝑧 ) ) 2 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž ( | | 𝑧 ) 2  | | | | 𝑔 ( 𝑧 ) 2 𝑑 π‘š ( 𝑧 ) < πœ€ . ( 3 . 2 0 )
Since 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 0 β†’ 𝑄 𝐾 is compact, we have that for every πœ€ > 0 there is a finite collection of functions 𝑓 1 , 𝑓 2 , … , 𝑓 π‘˜ ∈ 𝐡 ℬ 𝛼 0 such that, for each 𝑓 ∈ 𝐡 ℬ 𝛼 0 , there is a 𝑗 ∈ { 1 , … , π‘˜ } , such that s u p π‘Ž ∈ 𝔻 ξ€œ 𝔻 | | 𝑓 ( 𝑛 ) ( πœ‘ ( 𝑧 ) ) βˆ’ 𝑓 𝑗 ( 𝑛 ) ( | | πœ‘ ( 𝑧 ) ) 2 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž ( | | 𝑧 ) 2  | | | | 𝑔 ( 𝑧 ) 2 𝑑 π‘š ( 𝑧 ) < πœ€ . ( 3 . 2 1 ) On the other hand, from (3.20), it follows that if Μ‚ 𝛿 ∢ = m a x 1 ≀ 𝑗 ≀ π‘˜ 𝛿 𝑗 ( 𝑓 𝑗 , πœ€ ) , then for Μ‚ π‘Ÿ ∈ ( 𝛿 , 1 ) and all 𝑗 ∈ { 1 , … , π‘˜ } , we have s u p π‘Ž ∈ 𝔻 ξ€œ | πœ‘ ( 𝑧 ) | > π‘Ÿ | | 𝑓 𝑗 ( 𝑛 ) ( | | πœ‘ ( 𝑧 ) ) 2 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž ( | | 𝑧 ) 2  | | | | 𝑔 ( 𝑧 ) 2 𝑑 π‘š ( 𝑧 ) < πœ€ . ( 3 . 2 2 ) From (3.21) and (3.22), we have that for Μ‚ π‘Ÿ ∈ ( 𝛿 , 1 ) and every 𝑓 ∈ 𝐡 ℬ 𝛼 0 s u p π‘Ž ∈ 𝔻 ξ€œ | πœ‘ ( 𝑧 ) | > π‘Ÿ | | 𝑓 ( 𝑛 ) ( | | πœ‘ ( 𝑧 ) ) 2 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž ( | | 𝑧 ) 2  | | | | 𝑔 ( 𝑧 ) 2 𝑑 π‘š ( 𝑧 ) < 4 πœ€ . ( 3 . 2 3 ) If we apply (3.23) to the delays of the functions in (3.5) which are normalized so that they belong to 𝐡 ℬ 𝛼 and then use the monotone convergence theorem, we easily get that for Μ‚ π‘Ÿ > m a x { 𝛿 , 𝛿 } where 𝛿 is chosen as in (3.7) s u p π‘Ž ∈ 𝔻 ξ€œ | | | | πœ‘ ( 𝑧 ) > π‘Ÿ 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž ( | | 𝑧 ) 2  | | | | 𝑔 ( 𝑧 ) 2 ξ‚€ | | | | 1 βˆ’ πœ‘ ( 𝑧 ) 2  2 ( 1 βˆ’ 𝛼 βˆ’ 𝑛 ) 𝑑 π‘š ( 𝑧 ) < 𝐢 πœ€ , ( 3 . 2 4 ) from which (3.11) follows, as desired.

Theorem 3.3. Let 𝛼 > 0 , 𝐾 ∈ Ξ© ( 0 , ∞ ) , πœ‘ ∈ 𝑆 ( 𝔻 ) , 𝑔 ∈ 𝐻 ( 𝔻 ) and 𝑛 ∈ β„• , or 𝑛 = 0 and 𝛼 > 1 . Then the next statements are equivalent. (a) 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 β†’ 𝑄 𝐾 , 0 is bounded. (b) 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 β†’ 𝑄 𝐾 , 0 is compact. (c) 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 0 β†’ 𝑄 𝐾 , 0 is compact. (d) 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 0 β†’ 𝑄 𝐾 , 0 is weakly compact. (e) l i m | π‘Ž | β†’ 1 ∫ 𝔻 𝐾 ( 1 βˆ’ | πœ‚ π‘Ž ( 𝑧 ) | 2 ) | 𝑔 ( 𝑧 ) | 2 ( 1 βˆ’ | πœ‘ ( 𝑧 ) | 2 ) 2 ( 1 βˆ’ 𝛼 βˆ’ 𝑛 ) 𝑑 π‘š ( 𝑧 ) = 0 . (f) 𝑑 πœ‡ πœ‘ , 𝑔 , 𝑛 , 𝛼 ( 𝑧 ) is a vanishing 𝐾 -Carleson measure.

Proof. By Theorem 1.1, (e) and (f) are equivalent; by Lemma 2.4, (c) is equivalent to (d), while, by Lemma 2.5, (a) is equivalent to (c). Also (b) obviously implies (a).
(a) β‡’ (e) Let β„Ž 1 and β„Ž 2 be as in (3.5). Then from (3.7) and an elementary inequality, we get ξ€œ | | πœ‘ ( z ) | | > 𝛿 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž ( | | 𝑧 ) 2 | | | |  ξ‚€ 1 βˆ’ πœ‘ ( 𝑧 ) 2  2 ( 1 βˆ’ 𝛼 βˆ’ 𝑛 ) | | | | 𝑔 ( 𝑧 ) 2 ξ€œ 𝑑 π‘š ( 𝑧 ) ≀ 𝐢 𝔻 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž | | ( 𝑧 ) 2  | | | ξ‚€ 𝐼 ( 𝑛 ) πœ‘ , 𝑔 β„Ž 1  ξ…ž | | | ( 𝑧 ) 2 ξ€œ 𝑑 π‘š ( 𝑧 ) + 𝐢 𝔻 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž | | ( 𝑧 ) 2  | | | ξ‚€ 𝐼 ( 𝑛 ) πœ‘ , 𝑔 β„Ž 2  ξ…ž | | | ( 𝑧 ) 2 𝑑 π‘š ( 𝑧 ) . ( 3 . 2 5 ) For 𝑓 0 ( 𝑧 ) = 𝑧 𝑛 / 𝑛 ! ∈ ℬ 𝛼 , we get 𝐼 ( 𝑛 ) πœ‘ , 𝑔 𝑓 0 ∈ 𝑄 𝐾 , 0 . From this and since 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ( β„Ž 𝑗 ) ∈ 𝑄 𝐾 , 0 , 𝑗 = 1 , 2 , by letting | π‘Ž | β†’ 1 , we get that (e) holds.
(e) β‡’ (b). We have that for every πœ€ > 0 there is a 𝛿 ∈ ( 0 , 1 ) so that for | π‘Ž | > 𝛿 Ξ¦ πœ‘ , 𝑔 , 𝐾 ( π‘Ž ) < πœ€ . ( 3 . 2 6 ) On the other hand, by Lemma 2.6, Ξ¦ πœ‘ , 𝑔 , 𝐾 is continuous on | π‘Ž | ≀ 𝛿 , so uniformly bounded therein, which along with (3.26) gives the boundedness of Ξ¦ πœ‘ , 𝑔 , 𝐾 on 𝔻 . Hence, by Theorem 3.1, 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 β†’ 𝑄 𝐾 is bounded. By Lemma 2.1, we have l i m | π‘Ž | β†’ 1 s u p β€– 𝑓 β€– ℬ 𝛼 ≀ 1 ξ€œ 𝔻 | | | ξ‚€ 𝐼 ( 𝑛 ) πœ‘ , 𝑔 𝑓  ξ…ž | | | ( 𝑧 ) 2 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž | | ( 𝑧 ) 2  𝑑 π‘š ( 𝑧 ) ≀ 𝐢 s u p β€– 𝑓 β€– ℬ 𝛼 ≀ 1 β€– 𝑓 β€– 2 ℬ 𝛼 l i m | π‘Ž | β†’ 1 Ξ¦ πœ‘ , 𝑔 , 𝐾 ( π‘Ž ) = 𝐢 l i m | π‘Ž | β†’ 1 Ξ¦ πœ‘ , 𝑔 , K ( π‘Ž ) = 0 , ( 3 . 2 7 ) so 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 β†’ 𝑄 𝐾 , 0 is bounded.
Now assume that ( 𝑓 𝑙 ) 𝑙 ∈ β„• is a bounded sequence in ℬ 𝛼 , say by 𝐿 , converging to zero uniformly on compacta of 𝔻 as 𝑙 β†’ ∞ . To show that the operator 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 β†’ 𝑄 𝐾 , 0 is compact, it is enough to prove that there is a subsequence ( 𝑓 𝑙 π‘˜ ) π‘˜ ∈ β„• of ( 𝑓 𝑙 ) 𝑙 ∈ β„• such that 𝐼 ( 𝑛 ) πœ‘ , 𝑔 𝑓 𝑙 π‘˜ converges in 𝑄 𝐾 , 0 as π‘˜ β†’ ∞ . By Lemma 2.1 and Montel's theorem, it follows that there is a subsequence, which we may denote again by ( 𝑓 𝑙 ) 𝑙 ∈ β„• converging uniformly on compacta of 𝔻 to an 𝑓 ∈ ℬ 𝛼 , such that β€– 𝑓 β€– ℬ 𝛼 ≀ 𝐿 . Since 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ( ℬ 𝛼 ) βŠ† 𝑄 𝐾 , 0 , then clearly 𝐼 ( 𝑛 ) πœ‘ , 𝑔 𝑓 ∈ 𝑄 𝐾 , 0 . We show that l i m 𝑙 β†’ ∞ β€– β€– 𝐼 ( 𝑛 ) πœ‘ , 𝑔 𝑓 𝑙 βˆ’ 𝐼 ( 𝑛 ) πœ‘ , 𝑔 𝑓 β€– β€– 𝑄 𝐾 = 0 . ( 3 . 2 8 ) From (3.26), Lemma 2.1, and some simple calculation, we obtain s u p 𝛿 < | π‘Ž | < 1 ξ€œ 𝔻 | | | ξ‚€ 𝐼 ( 𝑛 ) πœ‘ , 𝑔 𝑓 𝑙 ( 𝑧 ) βˆ’ 𝐼 ( 𝑛 ) πœ‘ , 𝑔  𝑓 ( 𝑧 ) ξ…ž | | | 2 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž | | ( 𝑧 ) 2  𝑑 π‘š ( 𝑧 ) < 4 𝐢 𝐿 2 πœ€ . ( 3 . 2 9 )
For π‘Ž ∈ 𝔻 and 𝑑 ∈ ( 0 , 1 ) , let Ξ¨ 𝑑 ( ξ€œ π‘Ž ) = 𝔻 ⧡ 𝑑 𝔻 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž ( | | 𝑧 ) 2  | | | | 𝑔 ( 𝑧 ) 2 ξ‚€ | | | | 1 βˆ’ πœ‘ ( 𝑧 ) 2  2 ( 1 βˆ’ 𝛼 βˆ’ 𝑛 ) 𝑑 π‘š ( 𝑧 ) . ( 3 . 3 0 ) Lemma 2.6 essentially shows that Ξ¨ 𝑑 is continuous on 𝔻 . Hence, for each π‘Ž ∈ 𝔻 , there is a 𝑑 ( π‘Ž ) ∈ ( π‘Ÿ , 1 ) such that Ξ¨ 𝑑 ( π‘Ž ) ( π‘Ž ) < πœ€ / 2 . Moreover, there is a neighborhood π’ͺ ( π‘Ž ) of π‘Ž such that, for every 𝑏 ∈ π’ͺ ( π‘Ž ) , Ξ¨ 𝑑 ( π‘Ž ) ( 𝑏 ) < πœ€ . From this and since the set | π‘Ž | ≀ 𝛿 is compact, it follows that there is a 𝑑 0 ∈ ( 0 , 1 ) such that Ξ¨ 𝑑 0 ( π‘Ž ) < πœ€ when | π‘Ž | ≀ 𝛿 . This along with Lemma 2.1 implies that s u p | π‘Ž | ≀ 𝛿 ξ€œ 𝔻 ⧡ 𝑑 0 𝔻 | | | ξ‚€ 𝐼 ( 𝑛 ) πœ‘ , 𝑔 𝑓 𝑙 ( 𝑧 ) βˆ’ 𝐼 ( 𝑛 ) πœ‘ , 𝑔  𝑓 ( 𝑧 ) ξ…ž | | | 2 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž | | ( 𝑧 ) 2  β€– β€– 𝑓 𝑑 π‘š ( 𝑧 ) ≀ 𝐢 𝑙 β€– β€– βˆ’ 𝑓 2 ℬ 𝛼 s u p | π‘Ž | ≀ 𝛿 Ξ¨ 𝑑 0 ( π‘Ž ) < 4 𝐢 𝐿 2 πœ€ . ( 3 . 3 1 )
By the Weierstrass theorem 𝑓 𝑙 ( 𝑛 ) β†’ 𝑓 ( 𝑛 ) uniformly on compacta as 𝑙 β†’ ∞ , from which along with (2.2) and since πœ‘ ( 𝑑 0 𝔻 ) is compact, for π‘Ÿ = s u p 𝑀 ∈ πœ‘ ( 𝑑 0 𝔻 ) | 𝑀 | , it follows that s u p | π‘Ž | ≀ 𝛿 ξ€œ 𝑑 0 𝔻 | | | ξ‚€ 𝐼 ( 𝑛 ) πœ‘ , 𝑔 𝑓 𝑙 ( 𝑧 ) βˆ’ 𝐼 ( 𝑛 ) πœ‘ , 𝑔  𝑓 ( 𝑧 ) ξ…ž | | | 2 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž | | ( 𝑧 ) 2  𝑑 π‘š ( 𝑧 ) ≀ 𝐢 s u p | 𝑧 | ≀ π‘Ÿ | | | ξ€· 𝑓 𝑙 ξ€Έ βˆ’ 𝑓 ( 𝑛 ) ( | | | 𝑧 ) 2 s u p | π‘Ž | ≀ 𝛿 Ξ¦ πœ‘ , 𝑔 , 𝐾 ( π‘Ž ) ⟢ 0 , a s 𝑙 ⟢ ∞ . ( 3 . 3 2 )
From (3.29)–(3.32) and since 𝐼 ( 𝑛 ) πœ‘ , 𝑔 𝑓 ( 0 ) = 0 for each 𝑓 ∈ 𝐻 ( 𝔻 ) , we easily get (3.28), from which (b) follows, finishing the proof of this theorem.

Theorem 3.4. Let 𝛼 > 0 , 𝐾 ∈ Ξ© ( 0 , ∞ ) , πœ‘ ∈ 𝑆 ( 𝔻 ) , 𝑔 ∈ 𝐻 ( 𝔻 ) , and 𝑛 ∈ β„• , or 𝑛 = 0 and 𝛼 > 1 . Then the following statements are equivalent.(a) 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 0 β†’ 𝑄 𝐾 , 0 is bounded, (b) s u p π‘Ž ∈ 𝔻 ∫ 𝔻 | 𝑔 ( 𝑧 ) | 2 𝐾 ( 1 βˆ’ | πœ‚ π‘Ž ( 𝑧 ) | 2 ) ( 1 βˆ’ | πœ‘ ( 𝑧 ) | 2 ) 2 ( 1 βˆ’ 𝛼 βˆ’ 𝑛 ) 𝑑 π‘š ( 𝑧 ) < ∞ , and l i m | π‘Ž | β†’ 1 ξ€œ 𝔻 | | | | 𝑔 ( 𝑧 ) 2 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž ( | | 𝑧 ) 2  𝑑 π‘š ( 𝑧 ) = 0 . ( 3 . 3 3 )

Proof. Suppose (b) holds and 𝑓 ∈ ℬ 𝛼 0 . Then by Theorem 3.1, 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 0 β†’ 𝑄 𝐾 is bounded. We show 𝐼 ( 𝑛 ) πœ‘ , 𝑔 𝑓 ∈ 𝑄 𝐾 , 0 , for every 𝑓 ∈ ℬ 𝛼 0 . Since 𝑓 ∈ ℬ 𝛼 0 , we have that, for every πœ€ > 0 , there is an π‘Ÿ ∈ ( 0 , 1 ) such that (see, e.g., the idea in [35, Lemma 2.4]) | | 𝑓 ( 𝑛 ) | | ( πœ‘ ( 𝑧 ) ) 2 ξ‚€ | | | | 1 βˆ’ πœ‘ ( 𝑧 ) 2  2 ( 𝛼 + 𝑛 βˆ’ 1 ) < πœ€ f o r | | | | πœ‘ ( 𝑧 ) > π‘Ÿ . ( 3 . 3 4 ) Thus, s u p π‘Ž ∈ 𝔻 ξ€œ | | | | πœ‘ ( 𝑧 ) > π‘Ÿ | | | ξ‚€ 𝐼 ( 𝑛 ) πœ‘ , 𝑔  𝑓 ( 𝑧 ) ξ…ž | | | 2 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž | | ( 𝑧 ) 2  𝑑 π‘š ( 𝑧 ) < πœ€ s u p π‘Ž ∈ 𝔻 ξ€œ 𝔻 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž | | ( 𝑧 ) 2 | | | |  ξ‚€ 1 βˆ’ πœ‘ ( 𝑧 ) 2  2 ( 1 βˆ’ 𝛼 βˆ’ 𝑛 ) | | | | 𝑔 ( 𝑧 ) 2 𝑑 π‘š ( 𝑧 ) . ( 3 . 3 5 ) We also have l i m | π‘Ž | β†’ 1 ξ€œ | πœ‘ ( 𝑧 ) | ≀ π‘Ÿ | | | ξ‚€ 𝐼 ( 𝑛 ) πœ‘ , 𝑔  𝑓 ( 𝑧 ) ξ…ž | | | 2 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž | | ( 𝑧 ) 2  𝑑 π‘š ( 𝑧 ) ≀ 𝐢 β€– 𝑓 β€– 2 ℬ 𝛼 ξ€· 1 βˆ’ π‘Ÿ 2 ξ€Έ 2 ( 𝛼 + 𝑛 βˆ’ 1 ) l i m | π‘Ž | β†’ 1 ξ€œ | πœ‘ ( 𝑧 ) | ≀ π‘Ÿ 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž | | ( 𝑧 ) 2  | | | | 𝑔 ( 𝑧 ) 2 𝑑 π‘š ( 𝑧 ) ≀ 𝐢 β€– 𝑓 β€– 2 ℬ 𝛼 ξ€· 1 βˆ’ π‘Ÿ 2 ξ€Έ 2 ( 𝛼 + 𝑛 βˆ’ 1 ) l i m | π‘Ž | β†’ 1 ξ€œ 𝔻 𝐾 ξ‚€ | | πœ‚ 1 βˆ’ π‘Ž | | ( 𝑧 ) 2  | | | | 𝑔 ( 𝑧 ) 2 𝑑 π‘š ( 𝑧 ) = 0 . ( 3 . 3 6 ) Combining (3.35) and (3.36), we get 𝐼 ( 𝑛 ) πœ‘ , 𝑔 𝑓 ∈ 𝑄 𝐾 , 0 . Hence, 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 0 β†’ 𝑄 𝐾 , 0 is bounded.
Conversely, if 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 0 β†’ 𝑄 𝐾 , 0 is bounded, then 𝐼 ( 𝑛 ) πœ‘ , 𝑔 ∢ ℬ 𝛼 0 β†’ 𝑄 𝐾 is bounded too. Thus, by Theorem 3.1, we get the first condition in (b). For 𝑓 0 ( 𝑧 ) = 𝑧 𝑛 / 𝑛 ! ∈ ℬ 𝛼 0 , we get 𝐼 ( 𝑛 ) πœ‘ , 𝑔 𝑓 0 ∈ 𝑄 𝐾 , 0 , which is equivalent to (3.33), finishing the proof of the theorem.

If 𝑛 = 0 , we simply denote the operator 𝐼 ( 0 ) πœ‘ , 𝑔 by 𝐼 πœ‘ , 𝑔 .

Theorem 3.5. Let 𝛼 ∈ ( 0 , 1 ) , 𝐾 ∈ Ξ© ( 0 , ∞ ) , πœ‘ ∈ 𝑆 ( 𝔻 ) , and 𝑔 ∈ 𝐻 ( 𝔻 ) . Then the following statements are equivalent. (a) 𝐼 πœ‘ , 𝑔 ∢ ℬ 𝛼 β†’ 𝑄 𝐾 is bounded. (b) 𝐼 πœ‘ , 𝑔 ∢ ℬ 𝛼 0 β†’ 𝑄 𝐾 is bounded. (c) 𝑀 1 ∢ = s u p π‘Ž ∈ 𝔻 ∫ 𝔻 𝐾 ( 1 βˆ’ | πœ‚ π‘Ž ( 𝑧 ) | 2 ) | 𝑔 ( 𝑧 ) | 2 𝑑 π‘š ( 𝑧 ) < ∞ . (d) 𝑑 πœ‡ 1 ( 𝑧 ) = | 𝑔 ( 𝑧 ) | 2 𝑑 π‘š ( 𝑧 ) is a 𝐾 -Carleson measure. (e) 𝐼 πœ‘ , 𝑔 ∢ ℬ 𝛼 β†’ 𝑄 𝐾 is compact. (f) 𝐼 πœ‘ , 𝑔 ∢ ℬ 𝛼 0 β†’ 𝑄 𝐾 is compact. (g) 𝐼 πœ‘ , 𝑔 ∢ ℬ 𝛼 0 β†’ 𝑄 𝐾 is weakly compact. Moreover, if 𝐼 πœ‘ , 𝑔 ∢ ℬ 𝛼 β†’ 𝑄 𝐾 is bounded, then the next asymptotic relations hold β€– β€– 𝐼 πœ‘ , 𝑔 β€– β€– ℬ 𝛼 β†’ 𝑄 𝐾 ≍ β€– β€– 𝐼 πœ‘ , 𝑔 β€– β€– ℬ 𝛼 0 β†’ 𝑄 𝐾 ≍ 𝑀 1 1 / 2 . ( 3 . 3 7 )

Proof. The proof of the equivalence of statements (a)–(d) of this theorem is similar to the proof of Theorem 3.1; moreover, the implication (b) β‡’ (c) is much simpler since it follows by using the test function 𝑓 0 ( 𝑧 ) ≑ 1 . That (c) is equivalent to (e)–(g) is proved similarly as in Theorem 3.2, by using the well-known fact that if a bounded sequence ( 𝑓 𝑙 ) 𝑙 ∈ β„• in ℬ 𝛼 , 𝛼 ∈ ( 0 , 1 ) converges to zero uniformly on compacts of 𝔻 , then it converges to zero uniformly on the whole 𝔻 . The details are omitted.

The proof of the next theorem is similar to the proofs of Theorems 3.3 and 3.4 and will be omitted.

Theorem 3.6. Let 𝛼 ∈ ( 0 , 1 ) , 𝐾 ∈ Ξ© ( 0 , ∞ ) , πœ‘ ∈ 𝑆 ( 𝔻 ) , and 𝑔 ∈ 𝐻 ( 𝔻 ) . Then the following statements are equivalent. (a) 𝐼 πœ‘ , 𝑔 ∢ ℬ 𝛼 0 β†’ 𝑄 𝐾 , 0 is bounded. (b) 𝐼 πœ‘ , 𝑔 ∢ ℬ 𝛼 β†’ 𝑄 𝐾 , 0 is bounded. (c) 𝐼 πœ‘ , 𝑔 ∢ ℬ 𝛼 β†’ 𝑄 𝐾 , 0 is compact. (d) 𝐼 πœ‘ , 𝑔 ∢ ℬ 𝛼 0 β†’ 𝑄 𝐾 , 0 is compact. (e) 𝐼 πœ‘ , 𝑔 ∢ ℬ 𝛼 0 β†’ 𝑄 𝐾 , 0 is weakly compact. (f) l i m | π‘Ž | β†’ 1 ∫ 𝔻 𝐾 ( 1 βˆ’ | πœ‚ π‘Ž ( 𝑧 ) | 2 ) | 𝑔 ( 𝑧 ) | 2 𝑑 π‘š ( 𝑧 ) = 0 . (g) 𝑑 πœ‡ 1 ( 𝑧 ) = | 𝑔 ( 𝑧 ) | 2 𝑑 π‘š ( 𝑧 ) is a vanishing 𝐾 -Carleson measure.

Acknowledgment

This work is partially supported by the National Board of Higher Mathematics (NBHM)/DAE, India (Grant no. 48/4/2009/R&D-II/426) and by the Serbian Ministry of Science (Projects III41025 and III44006).