Abstract

Berinde and Borcut (2011), introduced the concept of tripled fixed point for single mappings in partially ordered metric spaces. Samet and Vetro (2011) established some coupled fixed point theorems for multivalued nonlinear contraction mappings in partially ordered metric spaces. In this paper, we obtain existence of tripled fixed point of multivalued nonlinear contraction mappings in the framework of partially ordered metric spaces. Also, we give an example.

1. Introduction and Preliminaries

Let (𝑋,𝑑) be a metric space. Consistent with [1], we denote by 𝐢𝐡(𝑋) the family of all nonempty closed bounded and nonempty closed subsets of 𝑋. Let CL(𝑋)={π΄βŠ‚π‘‹βˆΆπ΄β‰ βˆ…and𝐴=𝐴}, where 𝐴 denotes the closure of 𝐴 in 𝑋. For 𝐴,𝐡∈𝐢𝐡(𝑋), and π‘₯βˆˆπ‘‹, set 𝐷(π‘₯,𝐴)∢=inf{𝑑(π‘₯,π‘Ž)βˆΆπ‘Žβˆˆπ΄}. We define a Hausdorff metric 𝐻 on 𝐢𝐡(𝑋) by𝐻(𝐴,𝐡)∢=maxsupπ‘Žβˆˆπ΄π·(π‘Ž,𝐡),supπ‘βˆˆπ΅ξ‚Ό.𝐷(𝑏,𝐴)(1.1) A point π‘₯∈𝐾 is called a fixed point of 𝑇 if π‘₯βˆˆπ‘‡π‘₯.

The study of fixed points for multivalued contractions and nonexpansive maps using the Hausdorff metric was initiated by Markin [2]. Later, an interesting and rich fixed point theory for such maps was developed. Several authors studied the problem of existence of fixed point of multivalued mappings satisfying different contractive conditions (see, e.g., [3–10]). The theory of multivalued maps has application in control theory, convex optimization, differential equations, and economics.

Existence of fixed points in ordered metric spaces has been initiated in 2004 by Ran and Reurings [11], further studied by Nieto and RodrΓ­guez-LΓ³pez [12]. Samet and Vetro [13] introduced the notion of fixed point of 𝑁 order in case of single-valued mappings. In particular for 𝑁=3 (tripled case), we have the following definition.

Definition 1.1 (see, e.g., [13]). An element (π‘₯,𝑦,𝑧)βˆˆπ‘‹3 is called a tripled fixed point of a mapping πΉβˆΆπ‘‹3→𝑋 if and only if π‘₯=𝐹(π‘₯,𝑦,𝑧),𝑦=𝐹(𝑦,𝑧,π‘₯),𝑧=𝐹(𝑧,π‘₯,𝑦).(1.2)

Recently, Berinde and Borcut [14] established the existence of tripled fixed point of single-valued mappings in partially ordered metric spaces. The aim of this paper is to initiate the study of tripled fixed point of multivalued mappings in the framework of partially ordered metric spaces which in turn extend and strengthen various known results [5, 15].

2. Tripled Fixed Point Results for Multivalued Mappings

First, we introduce the following concepts.

Definition 2.1. An element (π‘₯,𝑦,𝑧)βˆˆπ‘‹3 is called a tripled fixed point of πΉβˆΆπ‘‹3β†’CL(𝑋) if π‘₯∈𝐹(π‘₯,𝑦,𝑧),π‘¦βˆˆπΉ(𝑦,𝑧,π‘₯),π‘§βˆˆπΉ(𝑧,π‘₯,𝑦).(2.1)

Definition 2.2. A mapping π‘“βˆΆπ‘‹3→ℝ is called lower semicontinuous if, for any sequences {π‘₯𝑛}, {𝑦𝑛}, {𝑧𝑛} in 𝑋 and (π‘₯,𝑦,𝑧)βˆˆπ‘‹3, one has limπ‘›β†’βˆžξ€·π‘₯𝑛,𝑦𝑛,𝑧𝑛=(π‘₯,𝑦,𝑧)βŸΉπ‘“(π‘₯,𝑦,𝑧)≀liminfπ‘›β†’βˆžξ€·π‘₯𝑛,𝑦𝑛,𝑧𝑛.(2.2)

Let (𝑋,𝑑) be a metric space endowed with a partial order βͺ― and π‘‡βˆΆπ‘‹β†’π‘‹. Define the set Ξ¨βŠ‚π‘‹3 by ξ€½Ξ¨=(π‘₯,𝑦,𝑧)βˆˆπ‘‹3ξ€Ύ.βˆΆπ‘‡(π‘₯)βͺ―𝑇(𝑦)βͺ―𝑇(𝑧)(2.3)

Definition 2.3. A mapping πΉβˆΆπ‘‹3→𝑋 is said to have a Ξ¨-property if (π‘₯,𝑦,𝑧)∈Ψ⟹𝐹(π‘₯,𝑦,𝑧)×𝐹(𝑦,𝑧,π‘₯)×𝐹(𝑧,𝑦,π‘₯)βŠ‚Ξ¨.(2.4)

We give some examples to illustrate Definition 2.3.

Example 2.4. Let 𝑋=ℝ be endowed with the usual order ≀, and π‘‡βˆΆπ‘‹β†’π‘‹. Define πΉβˆΆπ‘‹3β†’CL(𝑋) by 𝐹(π‘₯,𝑦,𝑧)={π‘₯}βˆ€π‘₯,𝑦,π‘§βˆˆβ„.(2.5) Obviously, 𝐹 has the Ξ¨-property.

Example 2.5. Let 𝑋=ℝ+ be endowed with the usual order ≀, and let π‘‡βˆΆπ‘‹β†’π‘‹ be defined by 𝑇π‘₯=exp(π‘₯). Define πΉβˆΆπ‘‹3β†’CL(𝑋) by 𝐹(π‘₯,𝑦,𝑧)={π‘₯+𝑧}βˆ€π‘₯,𝑦,π‘§βˆˆβ„+.(2.6) We have Ξ¨={(π‘₯,𝑦,𝑧)βˆˆπ‘‹3,exp(π‘₯)≀exp(𝑦)≀exp(𝑧)}. Moreover, 𝐹 has the Ξ¨-property.

Now, we prove the following theorem.

Theorem 2.6. Let (𝑋,𝑑) be a complete metric space endowed with a partial order βͺ― and Ξ¨β‰ βˆ…; that is, there exists (π‘₯0,𝑦0,𝑧0)∈Ψ. Suppose that πΉβˆΆπ‘‹3β†’CL(𝑋) has a Ξ¨-property such that π‘“βˆΆπ‘‹3β†’[0,∞) given by 𝑓(π‘₯,𝑦,𝑧)=𝐷(π‘₯,𝐹(π‘₯,𝑦,𝑧))+𝐷(𝑦,𝐹(𝑦,𝑧,π‘₯))+𝐷(𝑧,𝐹(𝑧,π‘₯,𝑦))βˆ€π‘₯,𝑦,π‘§βˆˆπ‘‹(2.7) is lower semicontinuous and there exists a function πœ™βˆΆ[0,∞)β†’[𝑀,1),0<𝑀<1, satisfying limsupπ‘Ÿβ†’π‘‘+[πœ™(π‘Ÿ)<1foreachπ‘‘βˆˆ0,∞).(2.8) If for any (π‘₯,𝑦,𝑧)∈Ψ there exist π‘’βˆˆπΉ(π‘₯,𝑦,𝑧),π‘£βˆˆπΉ(𝑦,𝑧,π‘₯), and π‘€βˆˆπΉ(𝑧,𝑦,π‘₯) with √[]πœ™(𝑓(π‘₯,𝑦,𝑧))𝑑(π‘₯,𝑒)+𝑑(𝑦,𝑣)+𝑑(𝑧,𝑀)≀𝑓(π‘₯,𝑦,𝑧)(2.9) such that [],𝑓(𝑒,𝑣,𝑀)β‰€πœ™(𝑓(π‘₯,𝑦,𝑧))𝑑(π‘₯,𝑒)+𝑑(𝑦,𝑣)+𝑑(𝑧,𝑀)(2.10) then 𝐹 has a tripled fixed point.

Proof. By our assumption, πœ™(𝑓(π‘₯,𝑦,𝑧))<1 for each (π‘₯,𝑦,𝑧)βˆˆπ‘‹3. Hence, for any (π‘₯,𝑦,𝑧)βˆˆπ‘‹3, there exist π‘’βˆˆπΉ(π‘₯,𝑦,𝑧),π‘£βˆˆπΉ(𝑦,𝑧,π‘₯), and π‘€βˆˆπΉ(𝑧,π‘₯,𝑦) satisfying βˆšβˆšπœ™(𝑓(π‘₯,𝑦,𝑧))𝑑(π‘₯,𝑒)≀𝐷(π‘₯,𝐹(π‘₯,𝑦,𝑧)),πœ™βˆš(𝑓(π‘₯,𝑦,𝑧))𝑑(𝑦,𝑣)≀𝐷(𝑦,𝐹(𝑦,𝑧,π‘₯)),πœ™(𝑓(π‘₯,𝑦,𝑧))𝑑(z,𝑀)≀𝐷(𝑧,𝐹(𝑧,π‘₯,𝑦)).(2.11) Let (π‘₯0,𝑦0,𝑧0) be an arbitrary point in Ξ¨. By (2.9) and (2.10), we can choose π‘₯1∈𝐹(π‘₯0,𝑦0,𝑧0), 𝑦1∈𝐹(𝑦0,𝑧0,π‘₯0), and 𝑧1∈𝐹(𝑧0,π‘₯0,𝑦0) satisfying ξ”πœ™ξ€·π‘“ξ€·π‘₯0,𝑦0,𝑧0𝑑π‘₯ξ€Έξ€Έξ€Ί0,π‘₯1𝑦+𝑑0,𝑦1𝑧+𝑑0,𝑧1ξ€·π‘₯≀𝑓0,𝑦0,𝑧0ξ€Έ(2.12) such that 𝑓π‘₯1,𝑦1,𝑧1𝑓π‘₯β‰€πœ™0,𝑦0,𝑧0𝑑π‘₯ξ€Έξ€Έξ€Ί0,π‘₯1𝑦+𝑑0,𝑦1𝑧+𝑑0,𝑧1ξ€Έξ€».(2.13) By (2.12) and (2.13), we obtain 𝑓π‘₯1,𝑦1,𝑧1𝑓π‘₯β‰€πœ™0,𝑦0,𝑧0𝑑π‘₯ξ€Έξ€Έξ€Ί0,π‘₯1𝑦+𝑑0,𝑦1𝑧+𝑑0,𝑧1β‰€ξ”ξ€Έξ€»πœ™ξ€·π‘“ξ€·π‘₯0,𝑦0,𝑧0ξ‚΅ξ”ξ€Έξ€Έπœ™ξ€·π‘“ξ€·π‘₯0,𝑦0,𝑧0𝑑π‘₯ξ€Έξ€Έξ€Ί0,π‘₯1𝑦+𝑑0,𝑦1𝑧+𝑑0,𝑧1ξ‚Άβ‰€ξ”ξ€Έξ€»πœ™ξ€·π‘“ξ€·π‘₯0,𝑦0,𝑧0𝑓π‘₯ξ€Έξ€Έ0,𝑦0,𝑧0ξ€Έ.(2.14) Thus, 𝑓π‘₯1,𝑦1,𝑧1ξ€Έβ‰€ξ”πœ™ξ€·π‘“ξ€·π‘₯0,𝑦0,𝑧0𝑓π‘₯ξ€Έξ€Έ0,𝑦0,𝑧0ξ€Έ.(2.15) Since 𝐹 has a Ξ¨-property and (π‘₯0,𝑦0,𝑧0)∈Ψ, so we have 𝐹π‘₯0,𝑦0,𝑧0𝑦×𝐹0,𝑧0,π‘₯0𝑧×𝐹0,π‘₯0,𝑦0ξ€ΈβŠ‚Ξ¨(2.16) which implies that (π‘₯1,𝑦1,𝑧1)∈Ψ.
Again by (2.9) and (2.10), we can choose π‘₯2∈𝐹(π‘₯1,𝑦1,𝑧1), 𝑦2∈𝐹(𝑦1,𝑧1,π‘₯1), and 𝑧2∈𝐹(𝑧1,π‘₯1,𝑦1) satisfying ξ”πœ™ξ€·π‘“ξ€·π‘₯1,𝑦1,𝑧1𝑑π‘₯ξ€Έξ€Έξ€Ί1,π‘₯2𝑦+𝑑1,𝑦2𝑧+𝑑1,𝑧2ξ€·π‘₯≀𝑓1,𝑦1,𝑧1ξ€Έ(2.17) such that 𝑓π‘₯2,𝑦2,𝑧2𝑓π‘₯β‰€πœ™1,𝑦1,𝑧1𝑑π‘₯ξ€Έξ€Έξ€Ί1,π‘₯2𝑦+𝑑1,𝑦2𝑧+𝑑1,𝑧2ξ€Έξ€».(2.18) Thus, we have 𝑓π‘₯2,𝑦2,𝑧2ξ€Έβ‰€ξ”πœ™ξ€·π‘“ξ€·π‘₯1,𝑦1,𝑧1𝑓π‘₯ξ€Έξ€Έ1,𝑦1,𝑧1ξ€Έ(2.19) and (π‘₯2,𝑦2,𝑧2)∈Ψ.
Continuing this process, we can choose sequences {π‘₯𝑛},{𝑦𝑛},{𝑧𝑛} in 𝑋 such that for each π‘›βˆˆβ„• with (π‘₯𝑛,𝑦𝑛,𝑧𝑛)∈Ψ.
π‘₯𝑛+1∈𝐹(π‘₯𝑛,𝑦𝑛,𝑧𝑛),𝑦𝑛+1∈𝐹(𝑦𝑛,𝑧𝑛,π‘₯𝑛) and 𝑧𝑛+1∈𝐹(𝑧𝑛,π‘₯𝑛,𝑦𝑛) satisfying ξ”πœ™ξ€·π‘“ξ€·π‘₯𝑛,𝑦𝑛,𝑧𝑛𝑑π‘₯𝑛,π‘₯𝑛+1𝑦+𝑑𝑛,𝑦𝑛+1𝑧+𝑑𝑛,𝑧𝑛+1ξ€·π‘₯≀𝑓𝑛,𝑦𝑛,𝑧𝑛(2.20) such that 𝑓π‘₯𝑛+1,𝑦𝑛+1,𝑧𝑛+1𝑓π‘₯β‰€πœ™π‘›,𝑦𝑛,𝑧𝑛𝑑π‘₯𝑛,π‘₯𝑛+1𝑦+𝑑𝑛,𝑦𝑛+1𝑧+𝑑𝑛,𝑧𝑛+1ξ€Έξ€».(2.21) Hence, we obtain 𝑓π‘₯𝑛+1,𝑦𝑛+1,𝑧𝑛+1ξ€Έβ‰€ξ”πœ™ξ€·π‘“ξ€·π‘₯𝑛,𝑦𝑛,𝑧𝑛𝑓π‘₯𝑛,𝑦𝑛,𝑧𝑛(2.22) with (π‘₯𝑛+1,𝑦𝑛+1,𝑧𝑛+1)∈Ψ. We claim that 𝑓(π‘₯𝑛,𝑦𝑛,𝑧𝑛)β†’0 as π‘›β†’βˆž. If 𝑓(π‘₯𝑛,𝑦𝑛,𝑧𝑛)=0 for some π‘›βˆˆβ„•, then 𝐷(π‘₯𝑛,𝐹(π‘₯𝑛,𝑦𝑛,𝑧𝑛))=0 implies that π‘₯π‘›βˆˆπΉ(π‘₯𝑛,𝑦𝑛,𝑧𝑛)=𝐹(π‘₯𝑛,𝑦𝑛,𝑧𝑛). Analogously, 𝐷(𝑦𝑛,𝐹(𝑦𝑛,𝑧𝑛,π‘₯𝑛))=0 implies that π‘¦π‘›βˆˆπΉ(𝑦𝑛,𝑧𝑛,π‘₯𝑛) and 𝐷(𝑧𝑛,𝐹(𝑧𝑛,𝑦𝑛,π‘₯𝑛))=0 implies that π‘§π‘›βˆˆπΉ(𝑧𝑛,𝑦𝑛,π‘₯𝑛). Hence, (π‘₯𝑛,𝑦𝑛,𝑧𝑛) becomes a tripled fixed point of 𝐹 for such 𝑛 and the result follows. Suppose that 𝑓(π‘₯𝑛,𝑦𝑛,𝑧𝑛)>0 for all π‘›βˆˆβ„•.
Using (2.22) and πœ™(𝑑)<1, we conclude that {𝑓(π‘₯𝑛,𝑦𝑛,𝑧𝑛)} is a decreasing sequence of positive real numbers. Thus, there exists a 𝛿β‰₯0 such that limπ‘›β†’βˆžπ‘“ξ€·π‘₯𝑛,𝑦𝑛,𝑧𝑛=𝛿.(2.23) We will show that 𝛿=0. Assume on contrary that 𝛿>0. Letting π‘›β†’βˆž in (2.22) and by assumption (2.8), we obtain 𝛿≀limsup𝑓(π‘₯𝑛,𝑦𝑛,𝑧𝑛)→𝛿+ξ”πœ™ξ€·π‘“ξ€·π‘₯𝑛,𝑦𝑛,𝑧𝑛𝛿<𝛿,(2.24) a contradiction. Hence, limπ‘›β†’βˆžπ‘“ξ€·π‘₯𝑛,𝑦𝑛,𝑧𝑛=0+.(2.25) Now, we prove that {π‘₯𝑛},{𝑦𝑛},{𝑧𝑛}βŠ‚π‘‹ are Cauchy sequences in (𝑋,𝑑). Assume that 𝛼=limsup𝑓(π‘₯𝑛,𝑦𝑛,𝑧𝑛)β†’0+ξ”πœ™ξ€·π‘“ξ€·π‘₯𝑛,𝑦𝑛,𝑧𝑛.ξ€Έξ€Έ(2.26) By (2.8), we conclude that 𝛼<1. Let π‘˜ be a real number such that 𝛼<π‘˜<1. Thus, there exists 𝑛0βˆˆβ„• such that ξ”πœ™ξ€·π‘“ξ€·π‘₯𝑛,𝑦𝑛,𝑧𝑛<π‘˜foreach𝑛β‰₯𝑛0.(2.27) Using (2.22), we obtain 𝑓π‘₯𝑛+1,𝑦𝑛+1,𝑧𝑛+1ξ€Έξ€·π‘₯<π‘˜π‘“π‘›,𝑦𝑛,𝑧𝑛foreach𝑛β‰₯𝑛0.(2.28) By mathematical induction, 𝑓π‘₯𝑛+1,𝑦𝑛+1,𝑧𝑛+1ξ€Έ<π‘˜π‘›+1βˆ’π‘›0𝑓π‘₯𝑛0,𝑦𝑛0,𝑧𝑛0ξ€Έforeach𝑛β‰₯𝑛0.(2.29) Since πœ™(𝑑)β‰₯𝑀>0 for all 𝑑β‰₯0 so (2.20), and (2.29) gives that 𝑑π‘₯𝑛,π‘₯𝑛+1𝑦+𝑑𝑛,𝑦𝑛+1𝑧+𝑑𝑛,𝑧𝑛+1<π‘˜ξ€Έξ€»π‘›βˆ’π‘›0βˆšπ‘€π‘“ξ€·π‘₯𝑛0,𝑦𝑛0,𝑧𝑛0ξ€Έforeach𝑛β‰₯𝑛0(2.30) which yields that {π‘₯𝑛},{𝑦𝑛},{𝑧𝑛}βŠ‚π‘‹ are Cauchy sequences in 𝑋. Since 𝑋 is complete, there exists (π‘Ž,𝑏,𝑐)βˆˆπ‘‹3 such that limπ‘›β†’βˆžπ‘₯𝑛=π‘Ž,limπ‘›β†’βˆžπ‘¦π‘›=𝑏,limπ‘›β†’βˆžπ‘§π‘›=c.(2.31) Finally, we show that (π‘Ž,𝑏,𝑐)βˆˆπ‘‹3 is tripled fixed point of 𝐹. As 𝑓 is lower semicontinuous, (2.25) implies that 0≀𝑓(π‘Ž,𝑏,𝑐)=𝐷(π‘Ž,𝐹(π‘Ž,𝑏,𝑐))+𝐷(𝑏,𝐹(𝑏,𝑐,π‘Ž))+𝐷(𝑐,𝐹(𝑐,π‘Ž,𝑏))≀liminfπ‘›β†’βˆžπ‘“ξ€·π‘₯𝑛,𝑦𝑛,𝑧𝑛=0.(2.32) Hence, 𝐷(π‘Ž,𝐹(π‘Ž,𝑏,𝑐))=𝐷(𝑏,𝐹(𝑏,𝑐,π‘Ž))=𝐷(𝑐,𝐹(𝑐,π‘Ž,𝑏))=0 gives that (π‘Ž,𝑏,𝑐) is a tripled fixed point of 𝐹.

Theorem 2.7. Let (𝑋,𝑑) be a complete metric space endowed with a partial order βͺ― and Ξ¨β‰ βˆ…; that is, there exists (π‘₯0,𝑦0,𝑧0)∈Ψ. Suppose that πΉβˆΆπ‘‹3β†’CL(𝑋) has a Ξ¨-property such that function π‘“βˆΆπ‘‹3β†’[0,∞) defined by 𝑓(π‘₯,𝑦,𝑧)=𝐷(π‘₯,𝐹(π‘₯,𝑦,𝑧))+𝐷(𝑦,𝐹(𝑦,𝑧,π‘₯))+𝐷(𝑧,𝐹(𝑧,π‘₯,𝑦))βˆ€π‘₯,𝑦,π‘§βˆˆπ‘‹,(2.33) is lower semicontinuous and there exists a function πœ™βˆΆ[0,∞)β†’[𝑀,1),0<𝑀<1, satisfying limsupπ‘Ÿβ†’π‘‘+[πœ™(π‘Ÿ)<1foreacht∈0,∞).(2.34) If for any (π‘₯,𝑦,𝑧)∈Ψ there exist π‘’βˆˆπΉ(π‘₯,𝑦,𝑧),π‘£βˆˆπΉ(𝑦,𝑧,π‘₯), and π‘€βˆˆπΉ(𝑧,𝑦,π‘₯) satisfying βˆšπœ™(Ξ”)Δ≀𝐷(π‘₯,𝑓(π‘₯,𝑦,𝑧))+𝐷(𝑦,f(𝑦,𝑧,π‘₯))+𝐷(𝑧,𝑓(𝑧,π‘₯,𝑦))(2.35) such that 𝐷(𝑒,𝑓(𝑒,𝑣,𝑀))+𝐷(𝑣,𝑓(𝑣,𝑀,𝑒))+𝐷(𝑀,𝑓(𝑀,𝑒,𝑣))β‰€πœ™(Ξ”)Ξ”,(2.36) where Ξ”=Ξ”((π‘₯,𝑦,𝑧),(𝑒,𝑣,𝑀))=[𝑑(π‘₯,𝑒)+𝑑(𝑦,𝑣)+𝑑(𝑧,𝑀)], then 𝐹 admits a tripled fixed point.

Proof. By replacing πœ™(𝑓(π‘₯,𝑦,𝑧)) with πœ™([𝑑(π‘₯,𝑒)+𝑑(𝑦,𝑣)+𝑑(𝑧,𝑀)]) in the proof of Theorem 2.6, we obtain sequences {π‘₯𝑛},{𝑦𝑛},{𝑧𝑛}βŠ‚π‘‹ such that for each π‘›βˆˆβ„• with ξ€·π‘₯𝑛,𝑦𝑛,π‘§π‘›ξ€ΈβˆˆΞ¨,π‘₯𝑛+1ξ€·π‘₯βˆˆπΉπ‘›,𝑦𝑛,𝑧𝑛,𝑦𝑛+1ξ€·π‘¦βˆˆπΉπ‘›,𝑧𝑛,π‘₯𝑛,𝑧𝑛+1ξ€·π‘§βˆˆπΉπ‘›,π‘₯𝑛,𝑦𝑛,(2.37) such that ξ”πœ™ξ€·Ξ”π‘›ξ€ΈΞ”π‘›ξ€·π‘₯≀𝐷𝑛π‘₯,𝐹𝑛,𝑦𝑛,𝑧𝑛𝑦+𝐷𝑛𝑦,𝐹𝑛,𝑧𝑛,π‘₯𝑛𝑧+𝐷𝑛𝑧,𝐹𝑛,π‘₯𝑛,𝑦𝑛,𝐷π‘₯ξ€Έξ€Έ(2.38)𝑛+1ξ€·π‘₯,𝐹𝑛+1,𝑦𝑛+1,𝑧𝑛+1𝑦+𝐷𝑛+1𝑦,𝐹𝑛+1,𝑧𝑛+1,π‘₯𝑛+1𝑧+𝐷𝑛+1𝑧,𝐹𝑛+1,π‘₯𝑛+1,𝑦𝑛+1β‰€ξ”ξ€Έξ€Έπœ™ξ€·Ξ”π‘›π·ξ€·π‘₯𝑛π‘₯,𝐹𝑛,𝑦𝑛,𝑧𝑛𝑦+𝐷𝑛𝑦,𝐹𝑛,𝑧𝑛,π‘₯𝑛𝑧+𝐷𝑛𝑧,𝐹𝑛,π‘₯𝑛,𝑦𝑛,ξ€Έξ€Έξ€Έ(2.39) where Δ𝑛=Δ𝑛π‘₯𝑛,𝑦𝑛,𝑧𝑛,ξ€·π‘₯𝑛+1,𝑦𝑛+1,𝑧𝑛+1ξ€·π‘₯ξ€Έξ€Έ=𝑑𝑛,π‘₯𝑛+1𝑦+𝑑𝑛,𝑦𝑛+1𝑧+𝑑𝑛,𝑧𝑛+1ξ€Έ.(2.40) Again, following arguments similar to those given in the proof of Theorem 2.6, we deduce that 𝐷π‘₯𝑛π‘₯,𝐹𝑛,𝑦𝑛,𝑧𝑛𝑦+𝐷𝑛𝑦,𝐹𝑛,𝑧𝑛,π‘₯𝑛𝑧+𝐷𝑛𝑧,𝐹𝑛,π‘₯𝑛,𝑦𝑛(2.41) is a decreasing sequence of real numbers. Thus, there exists a 𝛿>0 such that limπ‘›β†’βˆžπ·ξ€·π‘₯𝑛π‘₯,𝐹𝑛,𝑦𝑛,𝑧𝑛𝑦+𝐷𝑛𝑦,𝐹𝑛,𝑧𝑛,π‘₯𝑛+𝑧𝑛𝑧,𝐹𝑛,π‘₯𝑛,𝑦𝑛=𝛿.(2.42) Now, we need to prove that {Δ𝑛} admits a subsequence converging to certain πœ‚+ for some πœ‚β‰₯0. Since πœ™(𝑑)β‰₯𝑀>0, using (2.38), we obtain Δ𝑛≀1βˆšπ‘Žξ€·π·ξ€·π‘₯𝑛π‘₯,𝐹𝑛,𝑦𝑛,𝑧𝑛𝑦+𝐷𝑛𝑦,𝐹𝑛,𝑧𝑛,π‘₯𝑛𝑧+𝐷𝑛𝑧,𝐹𝑛,π‘₯𝑛,𝑦𝑛.ξ€Έξ€Έξ€Έ(2.43) From (2.42) and (2.43), it is clear that the sequence 𝐷π‘₯𝑛π‘₯,𝐹𝑛,𝑦𝑛,𝑧𝑛𝑦+𝐷𝑛𝑦,𝐹𝑛,𝑧𝑛,π‘₯𝑛𝑧+𝐷𝑛𝑧,𝐹𝑛,π‘₯𝑛,𝑦𝑛(2.44) is bounded. Therefore, there is some πœƒβ‰₯0 such that liminf𝑛→+βˆžΞ”π‘›=πœƒ.(2.45) From (2.37), we have π‘₯𝑛+1∈𝐹(π‘₯𝑛,𝑦𝑛,𝑧𝑛),𝑦𝑛+1∈𝐹(𝑦𝑛,𝑧𝑛,π‘₯𝑛), and 𝑧𝑛+1∈𝐹(𝑧𝑛,π‘₯𝑛,𝑦𝑛), Δ𝑛π‘₯β‰₯𝐷𝑛π‘₯,𝐹𝑛,𝑦𝑛,𝑧𝑛𝑦+𝐷𝑛𝑦,𝐹𝑛,𝑧𝑛,π‘₯𝑛𝑧+𝐷𝑛𝑧,𝐹𝑛,π‘₯𝑛,𝑦𝑛foreach𝑛β‰₯0.(2.46) So comparing (2.42) to (2.45), we get that πœƒβ‰₯𝛿. Now, we shall show that πœƒ=𝛿. If 𝛿=0, then, by (2.42) and (2.43), we get πœƒ=∢liminf𝑛→+βˆžΞ”π‘›=0 and consequently πœƒ=𝛿=0. Suppose that 𝛿>0. Assume on contrary that πœƒ>𝛿. From (2.42) and (2.45), there is a positive integer 𝑛0 such that 𝐷π‘₯𝑛π‘₯,𝐹𝑛,𝑦𝑛,𝑧𝑛𝑦+𝐷𝑛𝑦,𝐹𝑛,𝑧𝑛,π‘₯𝑛𝑧+𝐷𝑛𝑧,𝐹𝑛,π‘₯𝑛,𝑦𝑛<𝛿+πœƒβˆ’π›Ώ4,(2.47)π›Ώβˆ’πœƒβˆ’π›Ώ4<Δ𝑛,(2.48) for all 𝑛β‰₯𝑛0. We combine (2.38), (2.47) to (2.48) to obtain ξ”πœ™ξ€·Ξ”π‘›ξ€Έξ‚€π›Ώβˆ’πœƒβˆ’π›Ώ4ξ‚β‰€ξ”πœ™ξ€·Ξ”π‘›ξ€ΈΞ”π‘›ξ€·π‘₯≀𝐷𝑛π‘₯,𝐹𝑛,𝑦𝑛,𝑧𝑛𝑦+𝐷𝑛𝑦,𝐹𝑛,𝑧𝑛,π‘₯𝑛𝑧+𝐷𝑛𝑧,𝐹𝑛,π‘₯𝑛,𝑦𝑛<𝛿+πœƒβˆ’π›Ώ4,(2.49) for all 𝑛β‰₯𝑛0. It follows that ξ”πœ™ξ€·Ξ”π‘›ξ€Έβ‰€πœƒ+3𝛿3πœƒ+π›Ώβˆ€π‘›β‰₯𝑛0.(2.50) By (2.39) and (2.50), we have 𝐷π‘₯𝑛+1ξ€·π‘₯,𝐹𝑛+1,𝑦𝑛+1,𝑧𝑛+1𝑦+𝐷𝑛+1𝑦,𝐹𝑛+1,𝑧𝑛+1,π‘₯𝑛+1𝑧+𝐷𝑛+1𝑧,𝐹𝑛+1,π‘₯𝑛+1,𝑦𝑛+1𝐷π‘₯ξ€Έξ€Έβ‰€β„Žπ‘›ξ€·π‘₯,𝐹𝑛,𝑦𝑛,𝑧𝑛𝑦+𝐷𝑛𝑦,𝐹𝑛,𝑧𝑛,π‘₯𝑛𝑧+𝐷𝑛𝑧,𝐹𝑛,π‘₯𝑛,π‘¦π‘›ξ€Έξ€Έξ€Έβˆ€π‘›β‰₯𝑛0,(2.51) where β„Ž=(πœƒ+3𝛿)/(3πœƒ+𝛿). Since πœƒ>𝛿>0, therefore β„Ž<1, so proceeding by induction and combining the above inequalities, it follows that ξ€·π‘₯𝛿≀𝐷𝑛0+π‘˜0ξ€·π‘₯,𝐹𝑛0+π‘˜0,𝑦𝑛0+π‘˜0,𝑧𝑛0+π‘˜0𝑦+𝐷𝑛0+π‘˜0𝑦,𝐹𝑛0+π‘˜0,𝑧𝑛0+π‘˜0,π‘₯𝑛0+π‘˜0𝑧+𝐷𝑛0+π‘˜0𝑧,𝐹𝑛0+π‘˜0,π‘₯𝑛0+π‘˜0,𝑦𝑛0+π‘˜0ξ€Έξ€Έβ‰€β„Žπ‘˜0𝐷π‘₯𝑛0ξ€·π‘₯,𝐹𝑛0,𝑦𝑛0,𝑧𝑛0𝑦+𝐷𝑛0𝑦,𝐹𝑛0,𝑧𝑛0,π‘₯𝑛0𝑧+𝐷𝑛0𝑧,𝐹𝑛0,π‘₯𝑛0,𝑦𝑛0ξ€Έξ€Έξ€»<𝛿,(2.52) for a positive integer π‘˜0. Then, we obtain a contradiction, so we must have πœƒ=𝛿.
Now, we shall show that πœƒ=0. Since ξ€·π‘₯πœƒ=𝛿≀𝐷𝑛π‘₯,𝐹𝑛,𝑦𝑛,𝑧𝑛𝑦+𝐷𝑛𝑦,𝐹𝑛,𝑧𝑛,π‘₯𝑛𝑧+𝐷𝑛𝑧,𝐹𝑛,π‘₯𝑛,𝑦𝑛≀Δ𝑛,(2.53) then we rewrite (2.45) as liminf𝑛→+βˆžΞ”π‘›=πœƒ+.(2.54) Hence, there exists a subsequence {Ξ”π‘›π‘˜} of {Δ𝑛} such that liminfπ‘˜β†’+βˆžΞ”π‘›π‘˜=πœƒ+.
By (2.34), we have limsupΞ”π‘›π‘˜β†’πœƒ+ξ”πœ™ξ€·Ξ”π‘›π‘˜ξ€Έ<1.(2.55) From (2.39), we obtain 𝐷π‘₯π‘›π‘˜+1ξ€·π‘₯,πΉπ‘›π‘˜+1,π‘¦π‘›π‘˜+1,π‘§π‘›π‘˜+1𝑦+π·π‘›π‘˜+1𝑦,πΉπ‘›π‘˜+1,π‘§π‘›π‘˜+1,π‘₯π‘›π‘˜+1𝑧+π·π‘›π‘˜+1𝑧,πΉπ‘›π‘˜+1,π‘₯π‘›π‘˜+1,π‘¦π‘›π‘˜+1β‰€ξ”ξ€Έξ€Έπœ™ξ€·Ξ”π‘›π‘˜π·ξ€·π‘₯ξ€Έξ€·π‘›π‘˜ξ€·π‘₯,πΉπ‘›π‘˜,π‘¦π‘›π‘˜,π‘§π‘›π‘˜ξ€·π‘¦ξ€Έξ€Έ+π·π‘›π‘˜ξ€·π‘¦,π‘“π‘›π‘˜,π‘§π‘›π‘˜,π‘₯π‘›π‘˜ξ€·π‘§ξ€Έξ€Έ+π·π‘›π‘˜ξ€·π‘§,πΉπ‘›π‘˜,π‘₯π‘›π‘˜,π‘¦π‘›π‘˜.ξ€Έξ€Έξ€Έ(2.56) Taking the limit as π‘˜β†’βˆž and using (2.42), we have 𝛿=limsupπ‘˜β†’+βˆžξ€Ίπ·ξ€·π‘₯π‘›π‘˜+1ξ€·π‘₯,πΉπ‘›π‘˜+1,π‘¦π‘›π‘˜+1,π‘§π‘›π‘˜+1𝑦+π·π‘›π‘˜+1𝑦,πΉπ‘›π‘˜+1,π‘§π‘›π‘˜+1,π‘₯π‘›π‘˜+1𝑧+π·π‘›π‘˜+1𝑧,π‘“π‘›π‘˜+1,π‘₯π‘›π‘˜+1,π‘¦π‘›π‘˜+1≀limsupπ‘˜β†’+βˆžξ‚Έξ”πœ™ξ€·Ξ”π‘›π‘˜ξ€Έξ‚Ήlimsupπ‘˜β†’+βˆžξ€·π·ξ€·π‘₯π‘›π‘˜ξ€·π‘₯,πΉπ‘›π‘˜,π‘¦π‘›π‘˜,π‘§π‘›π‘˜ξ€·π‘¦ξ€Έξ€Έ+π·π‘›π‘˜ξ€·π‘¦,πΉπ‘›π‘˜,π‘§π‘›π‘˜,π‘₯π‘›π‘˜ξ€·π‘§ξ€Έξ€Έ+π·π‘›π‘˜ξ€·π‘§,πΉπ‘›π‘˜,π‘₯π‘›π‘˜,π‘¦π‘›π‘˜=limsupΞ”π‘›π‘˜β†’πœƒ+ξ”πœ™ξ€·Ξ”π‘›π‘˜ξ€Έξƒͺ𝛿.(2.57) Assume that 𝛿>0, then from (2.57) we get that 1≀limsupΞ”π‘›π‘˜β†’πœƒ+ξ”πœ™ξ€·Ξ”π‘›π‘˜ξ€Έ,(2.58) a contradiction with respect to (2.55), so 𝛿=0. Now, from (2.39), and (2.42) we have 𝛼=limsupΔ𝑛→0+ξ”πœ™ξ€·Ξ”π‘›ξ€Έ<1.(2.59) The rest of the proof is similar to the proof of Theorem 2.6, so it is omitted.

We improved and corrected the example of Samet and Vetro [13].

Example 2.8. Let 𝑋=[0,1], and let π‘‘βˆΆπ‘‹Γ—π‘‹β†’[0,∞) be the usual metric. Suppose that 𝑇(π‘₯)=𝑀 for all π‘₯∈[0,1] where 𝑀 is a constant in [0,1], and πΉβˆΆπ‘‹3β†’CL(𝑋) is defined, for all 𝑦,π‘§βˆˆπ‘‹ as follow: ⎧βŽͺβŽͺ⎨βŽͺβŽͺβŽ©ξ‚»π‘₯𝐹(π‘₯,𝑦,𝑧)=24ifπ‘₯∈0,15βˆͺξ‚€3215ξ‚„,32,115,1965ifπ‘₯=15.32(2.60) Obviously, 𝐹 has the Ξ¨-property. Set πœ™βˆΆ[0,∞)β†’[0,1): ⎧βŽͺ⎨βŽͺβŽ©πœ™(𝑑)=11212𝑑ifπ‘‘βˆˆ0,3ξ‚„,10ξ‚€216ifπ‘‘βˆˆ3.,∞(2.61)
Consider the function ⎧βŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺ⎩1𝑓(π‘₯,𝑦,𝑧)=π‘₯+𝑦+π‘§βˆ’4ξ€·π‘₯2+𝑦2+𝑧2ifπ‘₯,𝑦,π‘§βˆˆ0,15βˆͺξ‚€3215ξ‚„,132,1π‘₯+π‘¦βˆ’4ξ€·π‘₯2+𝑦2ξ€Έ+43160ifπ‘₯,π‘¦βˆˆ0,15βˆͺξ‚€3215ξ‚„32,1with𝑧=15,132π‘₯βˆ’4π‘₯2+86160ifπ‘₯,π‘¦βˆˆ0,15βˆͺξ‚€3215ξ‚„32,1with𝑦=𝑧=15,32129160ifπ‘₯=𝑦=𝑧=1532(2.62) which is lower semicontinuous. Thus, for all π‘₯,𝑦,π‘§βˆˆπ‘‹ with π‘₯,𝑦,𝑧≠15/32, there exist π‘’βˆˆπΉ(π‘₯,𝑦,𝑧)={π‘₯2/4},π‘£βˆˆπΉ(𝑦,𝑧,π‘₯)={𝑦2/4}, and π‘€βˆˆπΉ(𝑧,𝑦,π‘₯)={𝑧2/4} such that =π‘₯𝐷(𝑒,𝐹(𝑒,𝑣,𝑀))+𝐷(𝑣,𝐹(𝑣,𝑀,𝑒))+𝐷(𝑀,𝐹(𝑀,𝑣,𝑒))24βˆ’π‘₯4+𝑦6424βˆ’π‘¦4+𝑧6424βˆ’π‘§4=1644π‘₯ξ‚Έξ‚΅π‘₯+24π‘₯ξ‚Άξ‚΅π‘₯βˆ’24ξ‚Ά+𝑦𝑦+24π‘¦ξ‚Άξ‚΅π‘¦βˆ’24ξ‚Ά+𝑧𝑧+24π‘§ξ‚Άξ‚΅π‘§βˆ’24≀1ξ‚Άξ‚Ή4π‘₯ξ‚Έξ‚΅π‘₯+24𝑦𝑑(π‘₯,𝑒)+𝑦+24𝑧𝑑(𝑦,𝑣)+𝑧+24≀1𝑑(𝑧,𝑀)4π‘₯maxξ‚»ξ‚΅π‘₯+24ξ‚Ά,𝑦𝑦+24ξ‚Ά,𝑧𝑧+24[]<𝑑(π‘₯,𝑒)+𝑑(𝑦,𝑣)+𝑑(𝑧,𝑀)10π‘₯12maxξ‚»ξ‚΅π‘₯βˆ’24ξ‚Ά,ξ‚΅π‘¦π‘¦βˆ’24ξ‚Ά,ξ‚΅π‘§π‘§βˆ’24[][].𝑑(π‘₯,𝑒)+𝑑(𝑦,𝑣)+𝑑(𝑧,𝑀)β‰€πœ™(𝑑(π‘₯,𝑒)+𝑑(𝑦,𝑣)+𝑑(𝑧,𝑀))𝑑(π‘₯,𝑒)+𝑑(𝑦,𝑣)+𝑑(𝑧,𝑀)(2.63) Hence, for all π‘₯,𝑦,π‘§βˆˆπ‘‹ with π‘₯,𝑦,𝑧≠15/32, the conditions (2.35) and (2.36) are satisfied. Analogously, one can easily show that conditions (2.35) and (2.36) are satisfied for the cases (π‘₯,π‘¦βˆˆ[0,15/32)βˆͺ(15/32,1] with 𝑧=15/32) and (π‘₯∈[0,15/32)βˆͺ(15/32,1] and 𝑦=𝑧=15/32). For the last case, that is, π‘₯=𝑦=𝑧=15/32, we assume that 𝑒=𝑣=𝑀=15/96, so it follows that []=𝑑(π‘₯,𝑒)+𝑑(𝑦,𝑣)+𝑑(𝑧,𝑀)15>2163.(2.64) As a consequence, we get that √[]=ξ‚™πœ™(𝑑(π‘₯,𝑒)+𝑑(𝑦,𝑣)+𝑑(𝑧,𝑀))𝑑(π‘₯,𝑒)+𝑑(𝑦,𝑣)+𝑑(𝑧,𝑀)101615<16129||||160=𝐷(π‘₯,𝐹(π‘₯,𝑦,𝑧))+𝐷(𝑦,𝐹(𝑦,𝑧,π‘₯))+𝐷(𝑧,𝐹(𝑧,π‘₯,𝑦)),𝐷(𝑒,𝐹(𝑒,𝑣,𝑀))+𝐷(𝑣,𝐹(𝑣,𝑀,𝑒))+𝐷(𝑀,𝐹(𝑀,𝑣,𝑒))=315βˆ’1964ξ‚€15962||||<101615[].16=πœ™(𝑑(π‘₯,𝑒)+𝑑(𝑦,𝑣)+𝑑(𝑧,𝑀))𝑑(π‘₯,𝑒)+𝑑(𝑦,𝑣)+𝑑(𝑧,𝑀)(2.65) Thus, we conclude that all the conditions of Theorem 2.7 are satisfied and 𝐹 admits a tripled fixed point π‘Ž=(0,0,0).

Remark 2.9. If we replace the function πœ™ with the following, we get the results again: ⎧βŽͺ⎨βŽͺ⎩7πœ™(𝑑)=312𝑑ifπ‘‘βˆˆ0,4ξ‚„,7ξ‚€316ifπ‘‘βˆˆ4.,∞(2.66)