Abstract

This paper introduces multiresolution analyses with composite dilations (AB-MRAs) and addresses frame multiresolution analyses with composite dilations in the setting of reducing subspaces of ๐ฟ2(โ„๐‘›) (AB-RMRAs). We prove that an AB-MRA can induce an AB-RMRA on a given reducing subspace ๐ฟ2(๐‘†)โˆจ. For a general expansive matrix, we obtain the characterizations for a scaling function to generate an AB-RMRA, and the main theorems generalize the classical results. Finally, some examples are provided to illustrate the general theory.

1. Introduction

As well known, multiresolution analyses (MRAs) play a significant role in the construction of wavelets for ๐ฟ2(โ„) [1, 2]. Up to now, different characterizations of the scaling function for an MRA have been presented. It is shown in [1] that a function ๐œ‘โˆˆ๐ฟ2(โ„) is a generator for an MRA if and only if (1)โˆ‘๐‘˜โˆˆโ„ค|๎๐œ‘(๐œ‰+๐‘˜)|2=1, a.e. ๐œ‰โˆˆ[โˆ’1/2,1/2]; (2)lim๐‘—โ†’+โˆž|๎๐œ‘(2โˆ’๐‘—๐œ‰)|2=1, a.e. ๐œ‰โˆˆโ„;(3)there exists ๐‘š0โˆˆ๐ฟ2([0,1]) such that ๎๐œ‘(2๐œ‰)=๐‘š0(๐œ‰)๎๐œ‘(๐œ‰), a.e. ๐œ‰โˆˆโ„.

If condition (2) is replaced by โ‹ƒโ„=๐‘—โˆˆโ„ค2๐‘—supp(๎๐œ‘) or another condition that the function โˆซ๐น(๐‘ฅ,๐‘ฆ)=(1/(๐‘ฆโˆ’๐‘ฅ))๐‘ฆ๐‘ฅ|๎๐œ‘(๐œ”)|2d๐œ” is dyadicaly away from zero at the origin, then the two different characterizations of the scaling functions for MRAs are obtained in [3, 4], respectively.

Similarly, under certain conditions, wavelet with composite dilations can be constructed by AB-MRAs which is the generalized definition of MRAs and permits the existence of fast implementation algorithm [5]. Given an ๐‘›ร—๐‘› invertible matrix ๐‘Ž, ๐‘“โˆˆ๐ฟ2(โ„๐‘›), and ๐‘˜โˆˆโ„ค๐‘›, we define the dilation operator ๐ท and the shift operator ๐‘‡๐‘˜ on ๐ฟ2(โ„๐‘›) by ๐ท๐‘Ž||||๐‘“(โ‹…)โˆถ=det๐‘Ž1/2๐‘“(๐‘Žโ‹…),๐‘‡๐‘˜๐‘“(โ‹…)โˆถ=๐‘“(โ‹…โˆ’๐‘˜).(1.1) The affine system with composite dilations is defined by ๐’œ๐ด๐ต(ฮจ)={๐ท๐‘Ž๐ท๐‘๐‘‡๐‘˜ฮจโˆถ๐‘˜โˆˆโ„ค๐‘›,๐‘โˆˆ๐ต,๐‘Žโˆˆ๐ด} where ฮจ={๐œ“1,๐œ“2,โ€ฆ,๐œ“๐ฟ}โŠ‚๐ฟ2(โ„๐‘›). By choosing ฮจ, ๐ด, and ๐ต appropriately, we can make ๐’œ๐ด๐ต(ฮจ) an orthonormal basis or, more generally, a Parseval frame (PF) for ๐ฟ2(โ„๐‘›) [5โ€“7]. In this case, ฮจ is called an AB-multiwavelet or a PFโ€‰โ€‰AB-multiwavelet, respectively. Since not all of the AB-multiwavelet come from AB-MRAs, we only focus on the AB-multiwavelet which come from AB-MRAs. For convenience, we denote the operator ๐ท๐‘๐‘‡๐‘˜ by โ„ฌ.

Before proceeding, we need some conventions. We denote by ๐‘‡๐‘›=[โˆ’1/2,1/2]๐‘› the ๐‘›-dimensional torus. For a Lebesgue measurable set ๐ธ in โ„๐‘›, we denote by |๐ธ| its measure, denote by ๐œ’๐ธ the characteristic function of ๐ธ, and define ๐ธโˆผโˆถ=๐ธ+โ„ค๐‘›. An ๐‘›ร—๐‘› matrix ๐ด is called an expansive matrix if it is an integer matrix with all its eigenvalues greater than 1 in the module. ๐บ denotes the set of all expansive matrices. We denote by ๐บ๐ฟ๐‘›(โ„ค) the set {๐‘Žโˆถ๐‘Ž is an ๐‘›ร—๐‘› integral matrix and |det๐‘Ž|โ‰ 0}, by ๎ƒ€๐‘†๐ฟ๐‘›(โ„ค) the set {๐‘Žโˆถ๐‘Ž is an ๐‘›ร—๐‘› integral matrix and |det๐‘Ž|=1}, and by ๐ต the set of the subgroups of ๎ƒ€๐‘†๐ฟ๐‘›(โ„ค), respectively. For a Lebesgue measurable function ๐‘“, we define its support by supp(๐‘“)โˆถ={๐‘ฅโˆˆโ„๐‘›โˆถ๐‘“(๐‘ฅ)โ‰ 0}.(1.2) The Fourier transform of ๐‘“โˆˆ๐ฟ1(โ„๐‘›)โˆฉ๐ฟ2(โ„๐‘›) is defined by ๎๎€œ๐‘“(๐œ‰)โˆถ=โ„๐‘›๐‘“(๐‘ฅ)๐‘’โˆ’๐‘–2๐œ‹โŸจ๐œ‰,๐‘ฅโŸฉd๐‘ฅ(1.3) on โ„๐‘›, where โŸจ๐œ‰,๐‘ฅโŸฉ denotes the inner product in โ„๐‘›. Let ๐‘† be a Lebesgue nonzero measurable set in โ„๐‘›. We denote by ๐ฟ2(๐‘†)โˆจ the closed subspace of ๐ฟ2(โ„๐‘›) of the form ๐ฟ2(๐‘†)โˆจ๎‚†โˆถ=๐‘“โˆˆ๐ฟ2(โ„๐‘›๎‚€๎๐‘“๎‚๎‚‡.)โˆถsuppโŠ†๐‘†(1.4)

Definition 1.1 (see [8, 9]). The sequence {๐‘ฅ๐‘˜,๐‘™}๐‘˜,๐‘™ in a separable Hilbert space ๐ป is called a semiorthogonal PF for ๐ป if {๐‘ฅ๐‘˜,๐‘™}๐‘˜,๐‘™ is a PF for ๐ป and satisfies โŸจ๐‘ฅ๐‘˜1,๐‘™1,๐‘ฅ๐‘˜2,๐‘™2โŸฉ=0 for any ๐‘˜1,๐‘˜2โˆˆฮ›1, ๐‘™1,๐‘™2โˆˆฮ›2, and ๐‘˜1โ‰ ๐‘˜2, where ฮ›1, ฮ›2 are two countable index sets. In particular, if {๐‘ฅ๐‘˜,๐‘™}๐‘˜,๐‘™ is a semiorthogonal PF for span{๐‘ฅ๐‘˜,๐‘™}๐‘˜,๐‘™, it is called a semiorthogonal sequence.

Definition 1.2 (see [4, 10]). A closed subspace ๐‘‹ of ๐ฟ2(โ„๐‘›) is called a reducing subspace if ๐ท๐‘Ž๐‘‹=๐‘‹ and ๐‘‡๐‘˜๐‘‹=๐‘‹ for any ๐‘˜โˆˆโ„ค๐‘›, ๐‘Žโˆˆ๐บ.

The following proposition provides a characterization of reducing subspace.

Proposition 1.3 (see [4, 10]). A closed subspace ๐‘‹ of ๐ฟ2(โ„๐‘›) is a reducing subspace if and only if ๎‚†๐‘‹=๐‘“โˆˆ๐ฟ2(โ„๐‘›๎‚€๎๐‘“๎‚๎‚‡)โˆถsuppโŠ†๐‘†(1.5) for some measurable set ๐‘†โŠ†โ„๐‘› with ฬƒ๐‘Ž๐‘†=๐‘†. So, to be specific, one denotes a reducing subspace by ๐ฟ2(๐‘†)โˆจ instead of ๐‘‹. In particular, ๐ฟ2(โ„๐‘›) is a reducing subspace of ๐ฟ2(โ„๐‘›).

Definition 1.4 (see [5โ€“7]). Let ๐ตโ‹‰โ„ค๐‘› be a subgroup of the integral affine group ๎ƒ€๐‘†๐ฟ๐‘›(โ„ค)โ‹‰โ„ค๐‘› (the semidirect product of ๎ƒ€๐‘†๐ฟ๐‘› and โ„ค๐‘›). The closed subspace ๐‘‰ of ๐ฟ2(โ„๐‘›) is called a ๐ตโ‹‰โ„ค๐‘› invariant subspace if โ„ฌ๐‘‰=๐‘‰ for any (๐‘,๐‘˜)โˆˆ๐ตโ‹‰โ„ค๐‘›.

Definition 1.5 (see [2โ€“4]). Let ๐ต be a countable subset of ๎ƒ€๐‘†๐ฟ๐‘›(๐‘) and ๐ด={๐‘Ž๐‘–โˆถ๐‘–โˆˆโ„ค} where ๐‘Žโˆˆ๐บ๐ฟ๐‘›(โ„ค). We say that a sequence {๐‘‰๐‘—}๐‘—โˆˆโ„ค of closed subspaces of ๐ฟ2(โ„๐‘›) is an AB-MRA if the following holds: (1)๐‘‰0 is a ๐ตโ‹‰โ„ค๐‘› invariant space; (2)for each ๐‘—โˆˆโ„ค, ๐‘‰๐‘—โŠ‚๐‘‰๐‘—+1, and ๐‘‰๐‘—=๐ท๐‘—๐‘Ž๐‘‰0; (3)โ‹ƒ๐‘—โˆˆโ„ค๐‘‰๐‘—=๐ฟ2(โ„๐‘›); (4)โ‹‚๐‘—โˆˆโ„ค๐‘‰๐‘—={0};(5)there exists ๐œ‘โˆˆ๐‘‰0 such that ฮฆ๐ต={๐ท๐‘๐‘‡๐‘˜๐œ‘โˆถ๐‘โˆˆ๐ต,๐‘˜โˆˆโ„ค๐‘›} is a semiorthogonal PF for ๐‘‰0.

The space ๐‘‰0 is called an AB scaling space, and the function ๐œ‘ is an AB scaling function for ๐‘‰0 or a generator of AB-MRA.

Similarly, we say that a sequence {๐‘‰๐‘—}๐‘—โˆˆโ„ค is an AB-RMRA if it is an AB-MRA on ๐ฟ2(๐‘†)โˆจ, that is, conditions (1), (2), (4), (5), and (3)โ€ฒ โ€‰โ€‰โ‹ƒ๐‘—โˆˆโ„ค๐‘‰๐‘—=๐ฟ2(๐‘†)โˆจ are satisfied.

The fact that an AB-MRA can induce an AB-RMRA will be demonstrated by the obvious following results.

Proposition 1.6. Let ๐ผ be a countable index set and ๐‘ƒ the orthogonal projection operator from a Hilbert space ๐ป to its proper subspace ๐พ. If ฮจ={๐œ“๐‘–โˆถ๐‘–โˆˆ๐ผ} is a Parseval frame on ๐ป, then ๐‘ƒ(ฮจ)={๐‘ƒ(๐œ“๐‘–)โˆถ๐‘–โˆˆ๐ผ} is a Parseval frame on ๐พ.

Proposition 1.7. Let ๐‘ƒ be the orthogonal projection operator from a Hilbert space ๐ป to its reducing subspace ๐พ. Then ๐‘ƒ can commutate with the shift and dilation operators ๐‘‡๐‘˜ and ๐ท๐‘Ž, respectively.

Theorem 1.8. Suppose that {๐œ‘;๐‘‰๐‘—} is an AB-MRA, then ๎‚๐‘‰{๎‚๐œ‘;๐‘—} is an AB-RMRA for ๐ฟ2(๐‘†)โˆจ, where ๎‚๐œ‘โˆถ=๐‘ƒ๐œ‘, ๎‚๐‘‰0โˆถ=span{๐ท๐‘๐‘‡๐‘˜๎‚๐œ‘โˆถ๐‘โˆˆ๐ต,๐‘˜โˆˆโ„ค๐‘›}, ๎‚๐‘‰๐‘—โˆถ=span{๐ท๐‘Ž๐‘—๐ท๐‘๐‘‡๐‘˜๎‚๐œ‘โˆถ๐‘โˆˆ๐ต,๐‘˜โˆˆโ„ค๐‘›}, and ๐‘ƒ is the orthogonal projection operator from ๐ฟ2(โ„๐‘›) to ๐ฟ2(๐‘†)โˆจ.

The rest of this paper is organized as follows. Theorem 1.8 and some properties of an AB-RMRA will be proved in Section 2. In Section 3, the characterization of the generator for an AB-RMRA will be established, which is the main purpose of this paper. Finally, some examples are provided to illustrate the general theory.

2. Preliminaries

In this section, we will firstly prove Theorem 1.8 as follows.

We can easily prove that {๐ท๐‘๐‘‡๐‘˜๎‚๐œ‘โˆถ๐‘โˆˆ๐ต,๐‘˜โˆˆโ„ค๐‘›} is a Parseval frame sequence by Propositions 1.6 and 1.7. Naturally, {๐ท๐‘๐‘‡๐‘˜๎‚๐œ‘โˆถ๐‘โˆˆ๐ต,๐‘˜โˆˆโ„ค๐‘›} is a semi-Parseval frame for ๎‚๐‘‰0. Let ๐œ‘โˆˆ๐‘‰0โŠ‚๐ฟ2(โ„๐‘›). Thus ๐‘ƒ๐œ‘=๐œ‘1. For any ๎‚๐‘‰๐‘“โˆˆ0, we have ๎“๐‘“=๐‘๎“๐‘˜โŸจ๐‘“,๐ท๐‘๐‘‡๐‘˜๎‚๐œ‘โŸฉ๐ท๐‘๐‘‡๐‘˜๎“๎‚๐œ‘=๐‘๎“๐‘˜โŸจ๐‘“,๐ท๐‘๐‘‡๐‘˜๐œ‘1โŸฉ๐ท๐‘๐‘‡๐‘˜๐œ‘1,๐ท๐‘โ€ฒ๐‘‡๐‘˜โ€ฒ๎“๐‘“=๐‘๎“๐‘˜โŸจ๐‘“,๐ท๐‘๐‘‡๐‘˜๐œ‘1โŸฉ๐œ‘1๎€ท๐‘๎…ž๐‘๐‘ฅโˆ’๐‘๐‘˜๎…ž๎€ธ=๎“โˆ’๐‘˜๐‘๎“๐‘˜โŸจ๐‘“,๐ท๐‘๐‘‡๐‘˜๐œ‘1โŸฉ๐œ‘1(๐‘๐‘ฅโˆ’๐‘˜),(2.1) namely, ๐ท๐‘โ€ฒ๐‘‡๐‘˜โ€ฒ๎‚๐‘‰๐‘“โˆˆ0. So ๎‚๐‘‰0 is a ๐ตโ‹‰โ„ค๐‘› invariant space. On the other hand, ๎“๐‘“=๐‘๎“๐‘˜โŸจ๐‘“,๐ท๐‘๐‘‡๐‘˜๐‘ƒ๐œ‘โŸฉ๐ท๐‘๐‘‡๐‘˜๎“๐‘ƒ๐œ‘=๐‘๎“๐‘˜โŸจ๐‘ƒ๐‘“,๐ท๐‘๐‘‡๐‘˜๐œ‘โŸฉ๐‘ƒ๐ท๐‘๐‘‡๐‘˜๐œ‘=๎“๐‘๎“๐‘˜โŸจ๐‘“,๐ท๐‘๐‘‡๐‘˜๎“๐œ‘โŸฉ๐‘ƒ๐‘โ€ฒ๎“๐‘˜โ€ฒโŸจ๐ท๐‘๐‘‡๐‘˜๐œ‘,๐ท๐‘Ž๐ท๐‘๐‘‡๐‘˜๐œ‘โŸฉ๐ท๐‘Ž๐ท๐‘๎…ž๐‘‡๐‘˜๎…ž๐œ‘=๎“๐‘๎“๐‘˜๐‘๐‘,๐‘˜๐ท๐‘Ž๐ท๐‘๐‘‡๐‘˜๎‚๐‘‰๎‚๐œ‘โˆˆ1.(2.2) So ๎‚๐‘‰0โŠ‚๎‚๐‘‰1. Notice that ๎‚๐‘‰๐‘–=๐ท๐‘Ž๐‘—๎‚๐‘‰0. Then ๎‚๐‘‰๐‘–โŠ‚๎‚๐‘‰๐‘–+1. Thus, conditions (1), (2), and (5) in Definition 1.5 have been proved. However, condition (3)โ€ฒ is the natural consequence of the later Lemma 3.1 in Section 3. Therefore, we complete the proof of Theorem 1.8.

Some properties of AB-RMRA, which were not discussed in [5โ€“7], will be presented. The first one can be obtained obviously by the definition of AB-RMRA as follows.

Proposition 2.1. Suppose that {๐‘‰๐‘—}๐‘—โˆˆโ„ค is an AB-RMRA. Then (1)for each ๐‘—โˆˆโ„ค, {๐ท๐‘—๐‘Ž๐ท๐‘๐‘‡๐‘˜๐œ‘โˆถ๐‘โˆˆ๐ต,๐‘˜โˆˆโ„ค๐‘›} is a semiorthogonal PF on ๐‘‰๐‘—;(2)๐‘‰0 is a ๐ตโ‹‰โ„ค๐‘› invariant subspace, while ๐‘‰๐‘— is a ๐ตโ‹‰๐‘Žโˆ’๐‘—โ„ค๐‘› invariant subspace.

Condition (5) of AB-RMRA can be characterized by the following proposition.

Proposition 2.2. Let ๐œ‘โˆˆ๐ฟ2(๐‘†)โˆจ. Then ฮฆ๐ต={๐ท๐‘๐‘‡๐‘˜๐œ‘โˆถ๐‘โˆˆ๐ต,๐‘˜โˆˆโ„ค๐‘›} is a semiorthogonal PF sequence if and only if (1)โˆ‘๐‘˜โˆˆโ„ค๐‘›|๎๐œ‘(๐œ‰+๐‘˜)|2=๐œ’๐น(๐œ‰), a.e., where ๐น={๐œ‰โˆˆ๐‘‡๐‘›โˆฉฮฉโˆถ๎๐œ‘(๐œ‰+๐‘˜)โ‰ 0,๐‘˜โˆˆโ„ค๐‘›};(2)โˆ‘๐‘˜โˆˆโ„ค๐‘›๎๐œ‘(๐œ‰+๐‘˜)ฬƒ๐‘๎๐œ‘(โˆ’1(๐œ‰+๐‘˜))=0, a.e. ๐œ‰โˆˆฮฉ, for each ๐‘โˆˆ๐ต and ๐‘โ‰ ๐ผ๐‘›.

Proof. Necessity. For any ๐‘“(๐‘ฅ)โˆˆspan{๐‘‡๐‘˜๐œ‘โˆถ๐‘˜โˆˆโ„ค๐‘›}, we have ๎“๐‘“(๐‘ฅ)=๐‘,๐‘˜๎“โŸจ๐‘“,โ„ฌ๐œ‘โŸฉโ„ฌ๐œ‘(๐‘ฅ)=๐‘˜โŸจ๐‘“,๐‘‡๐‘˜๐œ‘โŸฉ๐‘‡๐‘˜๎“๐œ‘(๐‘ฅ)+๐‘โ‰ ๐ผ๐‘›๎“๐‘˜๎“โŸจ๐‘“,โ„ฌ๐œ‘โŸฉโ„ฌ๐œ‘(๐‘ฅ)=๐‘˜โŸจ๐‘“,๐‘‡๐‘˜๐œ‘โŸฉ๐‘‡๐‘˜๐œ‘(๐‘ฅ).(2.3) By Theoremโ€‰โ€‰1.6 in [1] and Theoremโ€‰โ€‰7.2.3 in [8], conclusion (1) holds clearly. Using Parseval theorem, we can deduce โŸจ๐‘‡๐‘˜๐œ‘,๐ท๐‘๐‘‡๐‘˜๎…ž๎€œ๐œ‘โŸฉ=ฮฉ๐œ‘(๐‘ฅโˆ’๐‘˜)๐œ‘(๐‘๐‘ฅโˆ’๐‘˜๎…ž=๎€œ)d๐‘ฅฮฉ๎๐œ‘(๐œ‰)ฬƒ๐‘๎๐œ‘(โˆ’1๐œ‰)๐‘’โˆ’2๐œ‹๐‘–(๐‘˜โˆ’ฬƒ๐‘โˆ’1๐‘˜โ€ฒ)โ‹…๐œ‰=๎€œd๐œ‰ฮฉ๎“๐‘™๎๐œ‘(๐œ‰+๐‘™)ฬƒ๐‘๎๐œ‘(โˆ’1(๐œ‰+๐‘™))๐‘’โˆ’2๐œ‹๐‘–(๐‘˜โˆ’๐‘˜1)โ‹…๐œ‰d๐œ‰,(2.4) where ๐‘˜1=ฬƒ๐‘โˆ’1๐‘˜๎…ž. Note that for any ๐‘˜,๐‘˜๎…žโˆˆโ„ค๐‘›, ๐‘โ‰ ๐‘๎…žโˆˆ๐ต, โŸจ๐ท๐‘๐‘‡๐‘˜๐œ‘,๐ท๐‘๎…ž๐‘‡๐‘˜๎…ž๐œ‘โŸฉ=0 if and only if for any ๐‘โˆˆ๐ต and ๐‘โ‰ ๐ผ๐‘›, โŸจ๐‘‡๐‘˜๐œ‘,๐ท๐‘๐‘‡๐‘˜๎…ž๐œ‘โŸฉ=0.(2.5)
Then, we have ๎“๐‘™๎๐œ‘(๐œ‰+๐‘™)ฬƒ๐‘๎๐œ‘(โˆ’1(๐œ‰+๐‘™))=0,a.e.๐œ‰โˆˆฮฉ.(2.6)
Sufficiency. By Theoremโ€‰โ€‰7.2.3 in [8] and conclusion (1), {๐‘‡๐‘˜๐œ‘โˆถ๐‘˜โˆˆโ„ค๐‘›} is a PF sequence. So is {๐ท๐‘๐‘‡๐‘˜๐œ‘โˆถ๐‘˜โˆˆโ„ค๐‘›} for any ๐‘โˆˆ๐ต. It follows from (2.4), (2.5), and conclusion (2) that for any ๐‘˜,๐‘˜๎…žโˆˆโ„ค๐‘›, ๐‘,๐‘๎…žโˆˆ๐ต, and ๐‘โ‰ ๐‘๎…ž, we get โŸจ๐ท๐‘๐‘‡๐‘˜๐œ‘,๐ท๐‘โ€ฒ๐‘‡๐‘˜โ€ฒ๐œ‘โŸฉ=0. Thus, for any ๐‘“(๐‘ฅ)โˆˆspan{๐ท๐‘๐‘‡๐‘˜๐œ‘โˆถ๐‘โˆˆ๐ต,๐‘˜โˆˆโ„ค๐‘›}, there exists ๐‘โˆˆ๐ต and ๐‘“๐‘(๐‘ฅ)โˆˆspan{๐ท๐‘๐‘‡๐‘˜๐œ‘โˆถ๐‘˜โˆˆโ„ค๐‘›} such that โ€–๐‘“โ€–2=๎“๐‘โˆˆ๐ตโ€–โ€–๐‘“๐‘โ€–โ€–2=๎“๐‘โˆˆ๐ต๎“๐‘˜โˆˆโ„ค๐‘›||โŸจ๐‘“๐‘,๐ท๐‘๐‘‡๐‘˜||๐œ‘โŸฉ2=๎“๐‘โˆˆ๐ต๎“๐‘˜โˆˆโ„ค๐‘›||โŸจ๐‘“,๐ท๐‘๐‘‡๐‘˜||๐œ‘โŸฉ2.(2.7) By Theoremโ€‰โ€‰1.6 in [1], the proof of Proposition 2.2 is completed.

Proposition 2.3. Let {๐‘‰๐‘—}๐‘—โˆˆโ„ค be a sequence of closed subspace of ๐ฟ2(๐‘†)โˆจ, where ๐‘‰๐‘—โˆถ=๎€ฝ๐ทspan๐‘—๐‘Ž๐ท๐‘๐‘‡๐‘˜๐œ‘โˆถ๐‘โˆˆ๐ต,๐‘˜โˆˆโ„ค๐‘›๎€พ.(2.8) If conditions (1), (2), and (5) of AB-RMRA are satisfied, then one has the following. (1)There exists {๐‘๐‘,๐‘˜}โˆˆ๐‘™2(๐ตร—โ„ค๐‘›) such that ๎“๐œ‘(๐‘ฅ)=๐‘๎“๐‘˜๐‘๐‘,๐‘˜||||det๐‘Ž1/2๐œ‘(๐‘๐‘Ž๐‘ฅโˆ’๐‘˜).(2.9)(2)There exists {โ„Ž๐‘(๐œ‰)}๐‘โˆˆ๐ตโŠ†๐ฟโˆž(๐‘‡๐‘›) such that ๎“๎๐œ‘(๐œ‰)=๐‘โ„Ž๐‘๎‚ƒ๎ƒ€(๐‘๐‘Ž)โˆ’1๐œ‰๎‚„๎‚ƒ๎ƒ€๎๐œ‘(๐‘๐‘Ž)โˆ’1๐œ‰๎‚„,(2.10) for any ๐‘โˆˆ๐ต, where โ„Ž๐‘(๐œ‰)=|det๐‘Ž|โˆ’1/2โˆ‘๐‘˜๐‘๐‘,๐‘˜๐‘’โˆ’2๐œ‹๐‘–๐‘˜โ‹…๐œ‰.

Proof. By conditions (2) and (5) of AB-RMRA and the fact that ๐œ‘โˆˆ๐‘‰0โŠ‚๐‘‰1, we obtain ๎“๐œ‘(๐‘ฅ)=๐‘,๐‘˜โŸจ๐œ‘,๐ท๐‘Žโ„ฌ๐œ‘โŸฉ๐ท๐‘Ž๎“โ„ฌ๐œ‘(๐‘ฅ)=๐‘๎“๐‘˜โˆˆโ„ค๐‘›๐‘๐‘,๐‘˜||||det๐‘Ž1/2๐œ‘(๐‘๐‘Ž๐‘ฅโˆ’๐‘˜),(2.11) where ๐‘๐‘,๐‘˜=โŸจ๐œ‘,๐ท๐‘Žโ„ฌ๐œ‘โŸฉ and {๐‘๐‘,๐‘˜}โˆˆ๐‘™2(๐ตร—โ„ค๐‘›). Therefore (2.9) holds. Taking Fourier transform on both sides of (2.9), we obtain (2.10), where for any ๐‘โˆˆ๐ต, โ„Ž๐‘(๐œ‰)=|det๐‘Ž|โˆ’1/2โˆ‘๐‘˜๐‘๐‘,๐‘˜๐‘’โˆ’2๐œ‹๐‘–๐‘˜โ‹…๐œ‰. In what follows, we will only prove {โ„Ž๐‘(๐œ‰)}๐‘โˆˆ๐ตโŠ†๐ฟโˆž(๐‘‡๐‘›). Indeed, for ๐‘Žโˆˆ๐บ๐ฟ๐‘›(โ„ค),ฬƒ๐‘Žโ„ค๐‘› is a subgroup of โ„ค๐‘› and the quotient group โ„ค๐‘›/ฬƒ๐‘Žโ„ค๐‘› has order ๐‘€=|det๐‘Ž|. Thus, we can choose a complete set of representatives of โ„ค๐‘›/ฬƒ๐‘Žโ„ค๐‘›, that is, the set {๐›ผ0,๐›ผ1,โ€ฆ,๐›ผ๐‘€โˆ’1} so that each ๐‘˜โˆˆโ„ค๐‘› can be uniquely expressed in the form ๐‘˜=ฬƒ๐‘Ž๐‘˜๎…ž+๐›ผ๐‘– with ๐‘˜๎…žโˆˆโ„ค๐‘›, 0โ‰ค๐‘–โ‰ค๐‘€โˆ’1. For simplicity, we denote ๎ƒ€(๐‘๐‘Ž)โˆ’1 and ๎ƒด(๐‘๎…ž๐‘Ž)โˆ’1 by ๐‘โˆ— and ๐‘โˆ—1, respectively. Then we have ๎“๐‘˜||||๎๐œ‘(๐œ‰+๐‘˜)2=๎“๐‘˜โˆˆโ„ค๐‘›|||||๎“๐‘โ„Ž๐‘๎€บ๐‘โˆ—๎€ป๎€บ๐‘(๐œ‰+๐‘˜)๎๐œ‘โˆ—๎€ป|||||(๐œ‰+๐‘˜)2=๎“๐‘˜โˆˆโ„ค๐‘›๎“๐‘,๐‘1โ„Ž๐‘๎€บ๐‘โˆ—๎€ป(๐œ‰+๐‘˜)โ„Ž๐‘1[๐‘โˆ—1๎€บ๐‘(๐œ‰+๐‘˜)]๎๐œ‘โˆ—๎€ป(๐œ‰+๐‘˜)๎๐œ‘[๐‘โˆ—1=(๐œ‰+๐‘˜)]๐‘€โˆ’1๎“๐‘–=0๎“๐‘˜โ€ฒ,๐‘,๐‘1โ„Ž๐‘๎€บ๐‘โˆ—๎€ท๐œ‰+๐›ผ๐‘–๎€ธ๎€ปโ„Ž๐‘1[๐‘โˆ—1(๐œ‰+๐›ผ๐‘–๎‚ƒ๐‘)]๎๐œ‘โˆ—๎€ท๐œ‰+๐›ผ๐‘–๎€ธ+ฬƒ๐‘โˆ’1๐‘˜๎…ž๎‚„ร—๎๐œ‘[๐‘โˆ—1(๐œ‰+๐›ผ๐‘–๎‚๐‘)+1โˆ’1๐‘˜๎…ž](2.12)=๐‘€โˆ’1๎“๐‘–=0๎“๐‘,๐‘1โ„Ž๐‘๎€บ๐‘โˆ—๎€ท๐œ‰+๐›ผ๐‘–๎€ธ๎€ปโ„Ž๐‘1[๐‘โˆ—1(๐œ‰+๐›ผ๐‘–ร—๎“)]๐‘˜โ€ฒโˆˆโ„ค๐‘›๎‚ƒ๐‘๎๐œ‘โˆ—๎€ท๐œ‰+๐›ผ๐‘–๎€ธ+ฬƒ๐‘โˆ’1๐‘˜๎…ž๎‚„๎๐œ‘[๐‘โˆ—1(๐œ‰+๐›ผ๐‘–๎‚๐‘)+1โˆ’1๐‘˜๎…ž]=๐‘€โˆ’1๎“๐‘–=0๎“๐‘||โ„Ž๐‘๎€บ๐‘โˆ—๎€ท๐œ‰+๐›ผ๐‘–||๎€ธ๎€ป2๎“๐‘˜โ€ฒโˆˆโ„ค๐‘›|||๎‚ƒ๐‘๎๐œ‘โˆ—๎€ท๐œ‰+๐›ผ๐‘–๎€ธ+ฬƒ๐‘โˆ’1๐‘˜๎…ž๎‚„|||2,(2.13) where (2.12) is obtained by the periodicity of function sequence {โ„Ž๐‘(๐œ‰)}๐‘ and (2.13) is proved by conclusion (2) in Proposition 2.2. In addition, using Proposition 2.2 again and (2.13) above, for any ๐œ‰โˆˆ๐น, we get โˆ‘๐‘˜โˆˆโ„ค๐‘›|๎๐œ‘(๐œ‰+๐‘˜)|2=โˆ‘๐‘€โˆ’1๐‘–=0โˆ‘๐‘|โ„Ž๐‘[๐‘โˆ—๐œ‰+๐‘โˆ—๐›ผ๐‘–)]|2=1. Then, for ๐œ‰โˆˆโ„๐‘›, |โ„Ž๐‘(๐œ‰)|2โ‰ค1, so โ„Ž๐‘(๐œ‰)โˆˆ๐ฟโˆž(๐‘‡๐‘›). Therefore, the proof of Proposition 2.3 is completed.

3. Characterization of the Generator for an AB-RMRA

In this section, we will characterize the scaling function of AB-RMRA which will determine a multiresolution structure and AB-wavelets and the obtained results can be easily extended to the whole space ๐ฟ2(โ„๐‘›).

Lemma 3.1. Let {๐‘‰๐‘—}๐‘—โˆˆโ„ค be a sequence of closed subspaces of ๐ฟ2(๐‘†)โˆจ and defined by (2.8). Assume that conditions (1), (2), and (5) in an AB-RMRA are satisfied. Then the following results are equivalent: (1)โ‹ƒ๐‘—โˆˆโ„ค๐‘‰๐‘—=๐ฟ2(๐‘†)โˆจ; (2)lim๐‘—โ†’+โˆžโˆ‘๐‘๎ƒด|๎๐œ‘[(๐‘๐‘Ž๐‘—)โˆ’1๐œ‰]|2=1, a.e. ๐œ‰โˆˆโ„๐‘›.

Proof. Theoremsโ€‰โ€‰1.7 andโ€‰โ€‰5.2 in [1] imply that for any ๐‘“โˆˆ๐ฟ2(โ„๐‘›), lim๐‘—โ†’+โˆžโ€–๐‘ƒ๐‘—๐‘“โ€–2=โ€–๐‘“โ€–2 is equivalent to โ‹ƒ๐‘—โˆˆโ„ค๐‘‰๐‘—=๐ฟ2(โ„๐‘›). Thus, for any ๐‘“โˆˆ๐ฟ2(๐‘†)โˆจ, lim๐‘—โ†’+โˆžโ€–๐‘ƒ๐‘—๐‘“โ€–2=โ€–๐‘“โ€–2 is equivalent to โ‹ƒ๐‘—โˆˆโ„ค๐‘‰๐‘—=๐ฟ2(๐‘†)โˆจ. Hence, we have to prove that lim๐‘—โ†’+โˆžโ€–๐‘ƒ๐‘—๐‘“โ€–2=โ€–๐‘“โ€–2 is equivalent to lim๐‘—โ†’+โˆžโˆ‘๐‘๎ƒด|๎๐œ‘[(๐‘๐‘Ž๐‘—)โˆ’1๐œ‰]|2=1, a.e. ๐œ‰โˆˆฮฉ. First, we prove (1)โ‡’(2) For any ๐‘“โˆˆ๐ฟ2(๐‘†)โˆจ, ๐‘“=๐‘ƒ๐‘—๐‘“+๐‘„๐‘—๐‘“, where ๐‘„๐‘—โˆถ๐ฟ2(โ„)โ†’(๐‘‰๐‘—)โŸ‚ is the orthogonal projection operator. Set ๎๐‘“(๐œ‰)=๐œ’๐‘‡๐‘›โˆฉ๐‘†(๐œ‰). Then, when ๐‘— is large enough, we have โ€–โ€–๐‘ƒ๐‘—๐‘“โ€–โ€–2=๎“๐‘๎“๐‘˜||๎ซ๐‘“,๐ท๐‘—๐‘Ž๐ท๐‘๐‘‡๐‘˜๐œ‘๎ฌ||2=๎“๐‘๎“๐‘˜|||||๎€œโ„๐‘›||det๐‘Ž๐‘—||โˆ’1/2๎๐‘“(๐œ‰)๎‚ธ๎ƒด๎€ท๎๐œ‘๐‘๐‘Ž๐‘—๎€ธโˆ’1๐œ‰๎‚น๐‘’2๐œ‹๐‘–๐‘˜โ‹…๎ƒด(๐‘๐‘Ž๐‘—)โˆ’1๐œ‰|||||d๐œ‰2=||det๐‘Ž๐‘—||๎“๐‘๎“๐‘˜|||||๎€œ๎ƒด(๐‘๐‘Ž๐‘—)โˆ’1๐‘‡๐‘›๎๐œ‘(๐œ‰)๐‘’2๐œ‹๐‘–๐‘˜โ‹…๐œ‰|||||2=||d๐œ‰det๐‘Ž๐‘—||๎“๐‘๎€œ๐‘‡๐‘›||||๐œ’๎ƒด(๐‘๐‘Ž๐‘—)โˆ’1๐‘‡๐‘›(๐œ‰)||||๎๐œ‘(๐œ‰)2=๎“d๐œ‰๐‘๎€œ๐‘‡๐‘›||||๎‚ธ๎ƒด๎€ท๎๐œ‘๐‘๐‘Ž๐‘—๎€ธโˆ’1๎‚น||||(๐œ‰)2=๎€œd๐œ‰๐‘‡๐‘›๎“๐‘||||๎‚ธ๎ƒด๎€ท๎๐œ‘๐‘๐‘Ž๐‘—๎€ธโˆ’1๎‚น||||(๐œ‰)2d๐œ‰.(3.1) Before proving the equivalence, we need to prove two assertions as follows:(i)โˆ‘๐‘๎ƒด|๎๐œ‘[(๐‘๐‘Ž๐‘—)โˆ’1๐œ‰]|2โˆˆ๐ฟ1(๐‘‡๐‘›); (ii)lim๐‘—โ†’+โˆžโˆ‘๐‘๎ƒด|๎๐œ‘[(๐‘๐‘Ž๐‘—)โˆ’1๐œ‰]|2 makes sense.Since ๎€œ๐‘‡๐‘›๎“๐‘||||๎‚ธ๎ƒด๎€ท๎๐œ‘๐‘๐‘Ž๐‘—๎€ธโˆ’1๐œ‰๎‚น||||2๎“d๐œ‰=๐‘๎€œ๐‘‡๐‘›||||๎‚ธ๎ƒด๎€ท๎๐œ‘๐‘๐‘Ž๐‘—๎€ธโˆ’1๐œ‰๎‚น||||2=||d๐œ‰det๐‘Ž๐‘—||๎“๐‘๎€œ๎ƒด(๐‘๐‘Ž๐‘—)โˆ’1๐‘‡๐‘›||||๎๐œ‘(๐œ‰)2=||d๐œ‰det๐‘Ž๐‘—||๎€œโ‹ƒ๐‘๎ƒด(๐‘๐‘Ž๐‘—)โˆ’1๐‘‡๐‘›||||๎๐œ‘(๐œ‰)2โ‰ค||d๐œ‰det๐‘Ž๐‘—||๎€œโ„๐‘›||||๎๐œ‘(๐œ‰)2d๐œ‰<โˆž,(3.2) it follows that (i) holds.
For (ii), we will only prove that {โˆ‘๐‘๎ƒด|๎๐œ‘[(๐‘๐‘Ž๐‘—)โˆ’1๐œ‰]|2}๐‘—โˆˆโ„ค is a monotonic bounded sequence when ๐œ‰(โˆˆ๐‘†) is fixed. Indeed, by the orthogonality, for each ๐‘โ‰ ๐‘๎…žโˆˆ๐ต, we have ฬƒ๐‘supp(๎๐œ‘(โˆ’1๎‚๐‘๐œ‰))โˆฉsupp(๎๐œ‘(๎…žโˆ’1๐œ‰))=โˆ…. In addition, we deduce from (2.10) that, for any ๐‘โˆˆ๐ต, ๎‚ƒ๎ƒด๎๐œ‘(๐‘๐‘Ž๐‘—)โˆ’1๐œ‰๎‚„=๎“๐‘โ€ฒโˆˆ๐ตโ„Ž๐‘โ€ฒ๎‚ธ๎ƒด(๐‘๎…ž๐‘Ž)โˆ’1๎ƒด(๐‘๐‘Ž๐‘—)โˆ’1๐œ‰๎‚น๎‚ธ๎ƒด๎๐œ‘(๐‘๎…ž๐‘Ž)โˆ’1๎ƒด(๐‘๐‘Ž๐‘—)โˆ’1๐œ‰๎‚น=๎“๐‘โ€ฒโˆˆ๐ตโ„Ž๐‘โ€ฒ๎‚ต๎‚๐‘๎…žโˆ’1ฬƒ๐‘โˆ’1๎ƒ€๐‘Ž๐‘—+1โˆ’1๐œ‰๎‚ถ๎‚ต๎‚๐‘๎๐œ‘๎…žโˆ’1ฬƒ๐‘โˆ’1๎ƒ€๐‘Ž๐‘—+1โˆ’1๐œ‰๎‚ถ.(3.3)
Set ๐‘โˆ—=ฬƒ๐‘โˆ’1๎ƒ€๐‘Ž๐‘—+1โˆ’1. Then by the orthogonality and Proposition 2.3, we obtain ๎“๐‘โˆˆ๐ต||||๎‚ธ๎ƒด๎€ท๎๐œ‘๐‘๐‘Ž๐‘—๎€ธโˆ’1๐œ‰๎‚น||||2=๎“๐‘โˆˆ๐ต|||||๎“๐‘โ€ฒโˆˆ๐ตโ„Ž๐‘โ€ฒ๎‚ต๎‚๐‘๎…žโˆ’1๐‘โˆ—๐œ‰๎‚ถ๎‚ต๎‚๐‘๎๐œ‘๎…žโˆ’1๐‘โˆ—๐œ‰๎‚ถ|||||2=๎“๐‘โˆˆ๐ต๎“๐‘1โˆˆ๐ตโ„Ž๐‘1๎‚€๎‚๐‘1โˆ’1๐‘โˆ—๐œ‰๎‚๎‚€๎‚๐‘๎๐œ‘1โˆ’1๐‘โˆ—๐œ‰๎‚๎“๐‘2โˆˆ๐ตโ„Ž๐‘2๎‚€๎‚๐‘2โˆ’1๐‘โˆ—๐œ‰๎‚๎‚€๎‚๐‘๎๐œ‘2โˆ’1๐‘โˆ—๐œ‰๎‚=๎“๐‘โˆˆ๐ต||||โ„Ž๐‘๎‚ต๎„Ÿ๎€ท๐‘๐‘Ž๐‘—+1๎€ธโˆ’1๐œ‰๎‚ถ๎‚ต๎„Ÿ๎€ท๎๐œ‘๐‘๐‘Ž๐‘—+1๎€ธโˆ’1๐œ‰๎‚ถ||||2โ‰ค๎“๐‘โˆˆ๐ต||||๎‚ต๎„Ÿ๎€ท๎๐œ‘๐‘๐‘Ž๐‘—+1๎€ธโˆ’1๐œ‰๎‚ถ||||2.(3.4) Hence, {โˆ‘๐‘โˆˆ๐ต๎ƒด|๎๐œ‘((๐‘๐‘Ž๐‘—)โˆ’1๐œ‰)|2}๐‘—โˆˆโ„ค is a monotonic sequence when ๐œ‰ is fixed. On the other hand, by the property of ๐ต, we deduce that ๐ท๐‘๐‘‡๐‘˜๐œ‘(๐‘ฅ)=๐œ‘(๐‘๐‘ฅโˆ’๐‘˜)=๐œ‘(๐‘(๐‘ฅโˆ’๐‘โˆ’1๐‘˜))=๐œ‘(๐‘(๐‘ฅโˆ’๐‘˜๎…ž))=๐‘‡๐‘˜๎…ž๐ท๐‘๐œ‘(๐‘ฅ). Note that {๐ท๐‘๐‘‡๐‘˜๐œ‘โˆถ๐‘˜โˆˆโ„ค๐‘›} is a PF for span{๐ท๐‘๐‘‡๐‘˜๐œ‘โˆถ๐‘˜โˆˆโ„ค๐‘›} for any ๐‘โˆˆ๐ต. Then {๐‘‡๐‘˜โ€ฒ๐ท๐‘๐œ‘โˆถ๐‘˜๎…žโˆˆโ„ค๐‘›} is a PF on span{๐ท๐‘๐‘‡๐‘˜๐œ‘โˆถ๐‘˜โˆˆโ„ค๐‘›}, which implies that there exists a set ๐‘€๐‘ such that โˆ‘๐‘˜ฬƒ๐‘|๎๐œ‘(โˆ’1๐œ‰+๐‘˜)|2=๐œ’๐‘€๐‘(๐œ‰). By the orthogonality, โˆ‘๐‘โˆ‘๐‘˜ฬƒ๐‘|๎๐œ‘(โˆ’1๐œ‰+๐‘˜)|2=๐œ’โ‹ƒ๐‘๐‘€๐‘(๐œ‰), consequently โ‹ƒ๐‘๐‘€๐‘=๐น. Hence, โˆ‘๐‘ฬƒ๐‘|๎๐œ‘(โˆ’1๐œ‰)|2โ‰ค1 holds for ๐œ‰โˆˆ๐‘†. So lim๐‘—โ†’+โˆžโˆ‘๐‘โˆˆ๐ต๎ƒด|๎๐œ‘((๐‘๐‘Ž๐‘—)โˆ’1๐œ‰)|2 exists. Now we have proved the two assertions. By the Lebesgue dominant convergence theorem, we get lim๐‘—โ†’+โˆžโ€–๐‘ƒ๐‘—๐‘“โ€–2=โˆซ๐‘‡๐‘›lim๐‘—โ†’+โˆžโˆ‘๐‘๎ƒด|๎๐œ‘[(๐‘๐‘Ž๐‘—)โˆ’1๐œ‰]|2d๐œ‰=โ€–๐‘“โ€–2=|๐‘‡๐‘›|=1. Thus, lim๐‘—โ†’+โˆžโˆ‘๐‘โˆˆ๐ต๎ƒด|๎๐œ‘[(๐‘๐‘Ž๐‘—)โˆ’1๐œ‰]|2=1, a.e. ๐œ‰โˆˆโ„๐‘›.
Next, we prove (2)โ‡’(1). Let ๐ท be the class of all functions ๐‘“โˆˆ๐ฟ2(โ„๐‘›) such that ๎๐‘“โˆˆ๐ฟโˆž(โ„๐‘›) and ๎๐‘“ is compactly supported in โ„๐‘›โงต{0}. If we can show that lim๐‘—โ†’+โˆžโ€–๐‘ƒ๐‘—๐‘“โ€–2=โ€–๐‘“โ€–2 for all ๐‘“โˆˆ๐ท, then, by Lemmaโ€‰โ€‰1.10 in [1], the proof is finished. Indeed, denoting ๎ƒด(๐‘๐‘Ž๐‘—)โˆ’1 by ๐‘โˆ—, we have โ€–โ€–๐‘ƒ๐‘—๐‘“โ€–โ€–2=๎“๐‘๎“๐‘˜|||๎‚ฌ๐‘“,๐ท๐‘Ž๐‘—๐ท๐‘๐‘‡๐‘˜๐œ‘๎‚ญ|||2=๎“๐‘๎“๐‘˜||||๎€œโ„๐‘›||det๐‘Ž๐‘—||โˆ’1/2๎๐‘“(๐œ‰)๎€ท๐‘๎๐œ‘โˆ—๐œ‰๎€ธ๐‘’2๐œ‹๐‘–๐‘˜โ‹…๐‘โˆ—๐œ‰||||d๐œ‰2=๎“๐‘๎“๐‘˜|||||๎“๐‘š๎€œ๎‚๐‘Ž๐‘—๐‘‡๐‘›||det๐‘Ž๐‘—||โˆ’1/2๎๐‘“๎€ท๐œ‰+๎‚๐‘Ž๐‘—๐‘š๎€ธ๎€บ๐‘๎๐œ‘โˆ—๎€ท๐œ‰+๎‚๐‘Ž๐‘—๐‘š๐‘’๎€ธ๎€ป2๐œ‹๐‘–๐‘˜โ‹…๐‘โˆ—๐œ‰|||||d๐œ‰2=๎“๐‘๎“๐‘˜|||||๎€œ๎‚๐‘Ž๐‘—๐‘‡๐‘›||det๐‘Ž๐‘—||โˆ’1/2๎“๐‘š๎๐‘“๎€ท๐œ‰+๎‚๐‘Ž๐‘—๐‘š๎€ธ๎€บ๐‘๎๐œ‘โˆ—๎€ท๐œ‰+๎‚๐‘Ž๐‘—๐‘š๐‘’๎€ธ๎€ป2๐œ‹๐‘–๐‘˜โ‹…๐‘โˆ—๐œ‰|||||d๐œ‰2=๎“๐‘๎€œ๎‚๐‘Ž๐‘—๐‘‡๐‘›|||||๎“๐‘š๎๐‘“๎€ท๐œ‰+๎‚๐‘Ž๐‘—๐‘š๎€ธ๎‚ƒ๐‘๎๐œ‘โˆ—๎‚€๐œ‰+๐‘Ž๐‘‡๐‘—๐‘š|||||๎‚๎‚„2=๎“d๐œ‰๐‘๎€œ๎‚๐‘Ž๐‘—๐‘‡๐‘›๎“๐‘š๎๐‘“๎€ท๐œ‰+๎‚๐‘Ž๐‘—๐‘š๎€ธ๎๐œ‘[๐‘โˆ—(๐œ‰+๎‚๐‘Ž๐‘—๎“๐‘š)]๐‘›๎๐‘“(๐œ‰+๎‚๐‘Ž๐‘—๎€บ๐‘๐‘›)๎๐œ‘โˆ—๎€ท๐œ‰+๎‚๐‘Ž๐‘—๐‘›=๎“๎€ธ๎€ปd๐œ‰๐‘๎“๐‘š๎€œ๎‚๐‘Ž๐‘—๐‘‡๐‘›+๐‘š๎“๐‘๎๐‘“(๐œ‚)๎๐‘“(๐œ‚+๎‚๐‘Ž๐‘—๎€บ๐‘๐‘)๎๐œ‘โˆ—ฬƒ๎€ป๐œ‚+๐‘๐‘๎๐œ‘(๐‘โˆ—=๎“๐œ‚)d๐œ‚๐‘๎€œโ„๐‘›๎“๐‘๎๐‘“(๐œ‚)๎๐‘“(๐œ‚+๎‚๐‘Ž๐‘—๎€ท๐‘๐‘)๎๐œ‘โˆ—ฬƒ๎€ธ๐œ‚+๐‘๐‘๎๐œ‘(๐‘โˆ—=๎€œ๐œ‚)d๐œ‚โ„๐‘›||๎||๐‘“(๐œ‚)2๎“๐‘|||๎‚€ฬƒ๐‘๎๐œ‘โˆ’1๎‚๐‘Ž๐‘—๐œ‚๎‚|||2d๐œ‚+๐‘…๐‘“,(3.5) where ๐‘…๐‘“=โˆ‘๐‘โˆ‘๐‘โ‰ 0โˆซโ„๐‘›๎๐‘“(๐œ‚)๎๐‘“(๐œ‚+๎‚๐‘Ž๐‘—๐‘)๎๐œ‘(๐‘โˆ—ฬƒ๐œ‚+๐‘๐‘)๎๐œ‘(๐‘โˆ—๐œ‚)๐‘‘๐œ‚. Since ๐‘“ has compact support, when ๐‘— is large enough, ๎๎supp(๐‘“(๐œ‚))โˆฉsupp(๐‘“(๐œ‚+๎‚๐‘Ž๐‘—๐‘))=โˆ…, consequently, ๐‘…๐‘“=0. Thus, taking ๐‘—โ†’+โˆž in (3.5), we obtain lim๐‘—โ†’+โˆžโ€–โ€–๐‘ƒ๐‘—๐‘“โ€–โ€–2=lim๐‘—โ†’+โˆž๎“๐‘๎“๐‘˜|||๎‚ฌ๐‘“,๐ท๐‘Ž๐‘—๐ท๐‘๐‘‡๐‘˜๐œ‘๎‚ญ|||2=lim๐‘—โ†’+โˆž๎“๐‘๎€œโ„๐‘›||๎||๐‘“(๐œ‚)2๎“๐‘|||๎‚€ฬƒ๐‘๎๐œ‘โˆ’1๎‚๐‘Ž๐‘—โˆ’1๐œ‚๎‚|||2=๎€œd๐œ‚โ„๐‘›||๎||๐‘“(๐œ‚)2lim๐‘—โ†’+โˆž๎“๐‘|||๎‚€ฬƒ๐‘๎๐œ‘โˆ’1๎‚๐‘Ž๐‘—โˆ’1๐œ‚๎‚|||2=๎€œd๐œ‚โ„๐‘›||๎๐‘“||(๐œ‚)2d๐œ‚=โ€–๐‘“โ€–2.(3.6)

Lemma 3.2. Let ๐‘Žโˆˆ๐บ, ๐œ‘โˆˆ๐ฟ2(โ„๐‘›) satisfy (2.10), and let {๐‘‰๐‘—}๐‘—โˆˆโ„ค be defined by (2.8). Then ๎š๐‘—โˆˆโ„ค๐‘‰๐‘—=๐ฟ2(๐‘†)โˆจ,(3.7) where โ‹ƒ๐‘†=๐‘—โˆˆโ„คโ‹ƒ๐‘โˆˆ๐ตฬƒ๐‘Ž๐‘—ฬƒ๐‘supp(๎๐œ‘).

Proof. By the definition of {๐‘‰๐‘—}๐‘—โˆˆโ„ค, we have ๐ท๐‘Ž๐‘‰๐‘—=๐‘‰๐‘—+1 for any ๐‘—โˆˆโ„ค. It follows that ๐ท๐‘Ž(โ‹ƒ๐‘—โˆˆโ„ค๐‘‰๐‘—โ‹ƒ)=๐‘—โˆˆโ„ค๐‘‰๐‘—. Note that ๐ท๐‘Ž is a unitary operator. Hence ๐ท๐‘Ž(โ‹ƒ๐‘—โˆˆโ„ค๐‘‰๐‘—)=๐ท๐‘Ž(โ‹ƒ๐‘—โˆˆโ„ค๐‘‰๐‘—)=โ‹ƒ๐‘—โˆˆโ„ค๐‘‰๐‘—. It is obvious to see that ๐‘‰๐‘—๎โˆ‘={๐‘“โˆถ๐‘“=๐‘๐น๐‘[๎ƒด(๐‘๐‘Ž๐‘—)โˆ’1๎ƒด๐œ‰]๎๐œ‘[(๐‘๐‘Ž๐‘—)โˆ’1๐œ‰]}, where {๐น๐‘}๐‘โˆˆ๐ฟ2(๐‘‡๐‘›). Then, for any ๐‘“โˆˆ๐‘‰0, we have ๎โˆ‘๐‘“(๐œ‰)=๐‘๐น๐‘(ฬƒ๐‘โˆ’1ฬƒ๐‘๐œ‰)๎๐œ‘(โˆ’1๐œ‰), ๐น๐‘โˆˆ๐ฟ2(๐‘‡๐‘›). Notice that for any ๐‘โˆˆ๐ต, ฬƒ๐‘๎๐œ‘(โˆ’1โˆ‘๐œ‰)=๐‘โ„Ž๐‘(ฬƒ๐‘โˆ’1ฬƒ๐‘Žโˆ’1ฬƒ๐‘๐œ‰)๎๐œ‘(โˆ’1ฬƒ๐‘Žโˆ’1๐œ‰). Thus ๎๎“๐‘“(๐œ‰)=๐‘1๐น๐‘1๎€ท๐‘1โˆ’๐‘‡๐œ‰๎€ธ๎“๐‘2โ„Ž๐‘2๎‚€๎‚๐‘2โˆ’1ฬƒ๐‘Žโˆ’1๐œ‰๎‚๎‚€๎‚๐‘๎๐œ‘2โˆ’1ฬƒ๐‘Žโˆ’1๐œ‰๎‚=๎“๐‘1๎“๐‘2๐น๐‘1๎‚€๎‚๐‘1โˆ’1๐œ‰๎‚โ„Ž๐‘2๎‚€๎‚๐‘2โˆ’1ฬƒ๐‘Žโˆ’1๐œ‰๎‚๎‚€๎‚๐‘๎๐œ‘2โˆ’1ฬƒ๐‘Žโˆ’1๐œ‰๎‚.(3.8) Put ๐ป๐‘2(ฬƒ๐‘โˆ’1ฬƒ๐‘Žโˆ’1โˆ‘๐œ‰)=๐‘1๐น๐‘1(๎‚๐‘1โˆ’1๐œ‰)๐‘€๐‘2(๎‚๐‘2โˆ’1ฬƒ๐‘Žโˆ’1๐œ‰). Then, we obtain ๎โˆ‘๐‘“(๐œ‰)=๐‘2๐ป๐‘2(๎‚๐‘2โˆ’1ฬƒ๐‘Žโˆ’1๎‚๐‘๐œ‰)๎๐œ‘(2โˆ’1ฬƒ๐‘Žโˆ’1๐œ‰). Recalling that ๐น๐‘(๐œ‰)โˆˆ๐ฟ2(๐‘‡๐‘›) and โ„Ž๐‘(๐œ‰)โˆˆ๐ฟโˆž(๐‘‡๐‘›), we have ๐‘€๐‘2(๐œ‰)โˆˆ๐ฟ2(๐‘‡๐‘›), so ๐‘“(๐‘ฅ)โˆˆ๐‘‰1. Thus, for any ๐‘“(๐‘ฅ), we get ๐‘‰0โŠ‚๐‘‰1, so ๐‘‰๐‘—โŠ‚๐‘‰๐‘—+1. Therefore, for any โ‹ƒ๐‘“(๐‘ฅ)โˆˆ๐‘—โˆˆโ„ค๐‘‰๐‘—, we can choose ๐‘—๐‘“>0 such that ๐‘“(๐‘ฅ)โˆˆ๐‘‰๐‘—๐‘“, that is, โˆ‘๐‘“(๐‘ฅ)=๐‘โˆ‘๐‘˜๐‘๐‘,๐‘˜๐œ‘(๐‘๐‘Ž๐‘—๐‘“๐‘ฅโˆ’๐‘˜). Hence, for any ๐‘šโˆˆโ„ค๐‘›, we have ๐‘‡๐‘š๎“๐‘“(๐‘ฅ)=๐‘๎“๐‘˜๐‘๐‘,๐‘˜๐œ‘๎‚€๐‘๐‘Ž๐‘—๐‘“๎‚=๎“(๐‘ฅโˆ’๐‘š)โˆ’๐‘˜๐‘๎“๐‘˜๐‘๐‘,๐‘˜๐œ‘๎‚€๐‘๐‘Ž๐‘—๐‘“๐‘ฅโˆ’๐‘๐‘Ž๐‘—๐‘“๎‚=๎“๐‘šโˆ’๐‘˜๐‘๎“๐‘˜๐‘๐‘,๐‘˜๐œ‘๎‚€๐‘๐‘Ž๐‘—๐‘“๎‚,๐‘ฅโˆ’๐‘˜(3.9) which implies ๐‘‡๐‘š(โ‹ƒ๐‘—โˆˆโ„ค๐‘‰๐‘—โ‹ƒ)โŠ†๐‘—โˆˆโ„ค๐‘‰๐‘—. Thus, ๐‘‡๐‘š(โ‹ƒ๐‘—โˆˆโ„ค๐‘‰๐‘—โ‹ƒ)=๐‘—โˆˆโ„ค๐‘‰๐‘— holds. Note that ๐‘‡๐‘˜ is also a unitary operator. Hence, ๐‘‡๐‘š(โ‹ƒ๐‘—โˆˆโ„ค๐‘‰๐‘—)=๐‘‡๐‘š(โ‹ƒ๐‘—โˆˆโ„ค๐‘‰๐‘—)=โ‹ƒ๐‘—โˆˆโ„ค๐‘‰๐‘—. By Proposition 1.3, โ‹ƒ๐‘—โˆˆโ„ค๐‘‰๐‘— is a reducing subspace. We notate โ‹ƒ๐‘—โˆˆโ„ค๐‘‰๐‘—=๐ฟ2(๐‘†)โˆจ. Next we have to prove โ‹ƒ๐‘†=๐‘—โˆˆโ„คโ‹ƒ๐‘๎‚๐‘Ž๐‘—ฬƒ๐‘supp(๎๐œ‘). By ๐œ‘(๐‘๐‘Ž๐‘—โ‹…)โˆˆ๐‘‰๐‘—, we have ๎ƒดsupp(๎๐œ‘((๐‘๐‘Ž๐‘—)โˆ’1๐œ‰))โŠ‚๐‘†. Obviously, we will only prove that โ‹ƒ๐‘†โงต๐‘—โˆˆโ„คโ‹ƒ๐‘๎‚๐‘Ž๐‘—ฬƒ๐‘supp(๎๐œ‘) is a zero measurable set. If โ‹ƒ๐‘†โงต๐‘—โˆˆโ„คโ‹ƒ๐‘๎‚๐‘Ž๐‘—ฬƒ๐‘supp(๎๐œ‘) is a set with nonzero measure, then a contradiction is led. In fact, choosing a set โ‹ƒ๐‘€โŠ‚๐‘†โงต๐‘—โˆˆโ„คโ‹ƒ๐‘๎‚๐‘Ž๐‘—ฬƒ๐‘supp(๎๐œ‘) with 0<|๐‘€|<+โˆž and using Plancherel theorem, we have โ€–โ€–๐‘ƒ๐‘—๐‘“โ€–โ€–2=๎ซ๐‘ƒ๐‘—๐‘“,๐‘ƒ๐‘—๐‘“๎ฌ=๎ซ๐‘“,๐‘ƒ๐‘—๐‘“๎ฌ=๎‚ฌ๎๎๐‘“๐‘“,๎…ž๐‘—๎‚ญ,(3.10) for any ๐‘“โˆˆ๐ฟ2(โ„๐‘›), where ๐‘“๎…ž๐‘—โˆถ=๐‘ƒ๐‘—๐‘“. In particular, setting ๎๐‘“(๐œ‰)=๐œ’๐‘€(๐œ‰) and taking ๐‘—โ†’+โˆž in (3.10), we get โ€–๐‘ƒ๐‘—๐‘“โ€–2๎๎๐‘“=โŸจ๐‘“,๎…ž๐‘—โŸฉ=0, but โ€–๐‘“โ€–2=|๐‘€|>0, and this is a contradiction. Therefore, we complete the proof of Lemma 3.2.

By Lemmas 3.1 and 3.2 and Theoremsโ€‰โ€‰1.7 andโ€‰โ€‰5.2 in [1], we characterize the density condition of AB-RMRA as follows.

Theorem 3.3. Let ๐‘Žโˆˆ๐บ and {๐‘‰๐‘—}๐‘—โˆˆโ„ค be defined by (2.8). If conditions (1), (2), and (5) of AB-RMRA are satisfied, then the following results are equivalent: (1)โ‹ƒ๐‘—โˆˆโ„ค๐‘‰๐‘—=๐ฟ2(๐‘†)โˆจ; (2)lim๐‘—โ†’+โˆžโ€–๐‘ƒ๐‘—๐‘“โ€–2=โ€–๐‘“โ€–2, where ๐‘ƒ๐‘—โˆถ๐ฟ2(โ„๐‘›)โ†’๐‘‰๐‘— denotes an orthogonal projection operator;(3)lim๐‘—โ†’+โˆžโˆ‘๐‘โˆˆ๐ต๎ƒด|๎๐œ‘((๐‘๐‘Ž๐‘—)โˆ’1๐œ‰)|2=1, a.e. ๐œ‰โˆˆ๐‘†;(4)โ‹ƒ๐‘†=๐‘—โˆˆโ„คโ‹ƒ๐‘ฬƒ๐‘Ž๐‘—ฬƒ๐‘supp๎๐œ‘.

It is well known that โ‹‚๐‘—โˆˆโ„ค๐‘‰๐‘—={0} can be deduced by the other conditions of MRA. Similarly, the condition โ‹‚๐‘—โˆˆโ„ค๐‘‰๐‘—={0} of AB-RMRA can be also deduced by the others. Thus, using Proposition 2.2 and Theorem 3.3, we can get the main theorem as follows.

Theorem 3.4. Let ๐‘Žโˆˆ๐บ, and let ๐ต be a subgroup of ๎ƒ€๐‘†๐ฟ๐‘›(โ„ค) with ๐‘Ž๐ต๐‘Žโˆ’1โŠ†๐ต. Suppose that ๐œ‘โˆˆ๐ฟ2(๐‘†)โˆจ and {๐‘‰๐‘—}๐‘—โˆˆโ„ค is defined by (2.8). Then ๐œ‘ is a generator of AB-RMRA if and only if (1)there exists {โ„Ž๐‘(๐œ‰)}๐‘โˆˆ๐ตโŠ‚๐ฟโˆž(๐‘‡๐‘›) such that ๎“๎๐œ‘(๐œ‰)=๐‘๐‘€๐‘๎‚€ฬƒ๐‘โˆ’1ฬƒ๐‘Žโˆ’1๐œ‰๎‚๎‚€ฬƒ๐‘๎๐œ‘โˆ’1ฬƒ๐‘Žโˆ’1๐œ‰๎‚;(3.11)(2)โˆ‘๐‘˜|๎๐œ‘(๐œ‰+๐‘˜)|2=๐œ’๐น(๐œ‰), a.e., where ๐น={๐œ‰โˆˆ๐‘‡๐‘›โˆฉ๐‘†โˆถ๎๐œ‘(๐œ‰+๐‘˜)โ‰ 0,๐‘˜โˆˆโ„ค๐‘›};(3)for any ๐‘โˆˆ๐ต and ๐‘โ‰ ๐ผ๐‘›, โˆ‘๐‘˜๎๐œ‘(๐œ‰+๐‘˜)ฬƒ๐‘๎๐œ‘(โˆ’1(๐œ‰+๐‘˜))=0, a.e. ๐œ‰โˆˆ๐‘†;(4)โ‹ƒ๐‘†=๐‘—โˆˆโ„คโ‹ƒ๐‘ฬƒ๐‘Ž๐‘—ฬƒ๐‘supp(๎๐œ‘).

Remarks 1. (1) Condition (4) in Theorem 3.4 can be replaced by any one of conditions in Theorem 3.3.
(2) If ๐‘†=โ„๐‘› in Theorem 3.4, then we obtain the characterization of generator of AB-MRA.
(3) If ๐‘›=1, ๐‘Ž=(2), and ๐ต=(1) in Theorem 3.4, then we obtain the characterization of {๐‘‰๐‘—}๐‘—โˆˆโ„ค as a generator of MRA on ๐ฟ2(โ„).

Corollary 3.5. Let ๐‘Žโˆˆ๐บ, and let ๐ต be a subgroup of ๎ƒ€๐‘†๐ฟ๐‘›(โ„ค) with ๐‘Ž๐ต๐‘Žโˆ’1โŠ†๐ต. Suppose that ๐ธ is a bounded nonzero measurable set satisfying ฬƒ๐‘Žโˆ’1๐ธโŠ‚๐ธ with โ‹ƒ๐‘†=๐‘—โˆˆโ„คโ‹ƒ๐‘ฬƒ๐‘Ž๐‘—ฬƒ๐‘๐ธ. Define ๎๐œ‘(๐œ‰)=๐œ’๐ธ(๐œ‰) and ๐น={๐œ‰โˆˆ๐‘‡๐‘›โˆฉฮฉโˆถ๎๐œ‘(๐œ‰+๐‘˜)โ‰ 0,๐‘˜โˆˆโ„ค๐‘›}. Then ๐œ‘ generates an AB-RMRA if and only if (1)โ‹ƒ๐น=๐‘˜โˆˆโ„ค๐‘›(๐ธ+๐‘˜) with |๐ธโˆฉ(๐ธ+๐‘˜)|=0, |๐‘๐‘‡๐ธโˆฉ๐‘๎…ž๐‘‡๐ธ|=0(๐‘โ‰ ๐‘๎…ž);(2)there exists ๐‘โˆˆ๐ต such that ๎ƒ€(๐‘๐‘Ž)โˆ’1๐ธโŠ‚๐ธ and [๎ƒ€(๐‘๐‘Ž)โˆ’1๐ธ]โˆผ๎ƒ€โˆฉ๐ธ=(๐‘๐‘Ž)โˆ’1๐ธ;(3)๐‘‡๐‘˜๐œ’๎ƒ€(๐‘๐‘Ž)โˆ’1๐ธ๎ƒ€(๐œ‰)=๐œ’(๐‘๐‘Ž)โˆ’1๐ธ(๐œ‰) on ๎ƒ€(๐‘๐‘Ž)โˆ’1๎ƒ€๐ธโˆฉ[(๐‘๐‘Ž)โˆ’1๐ธ+๐‘˜]โ‰ โˆ… for ๐‘˜โˆˆโ„ค๐‘›โงต{0}.

4. Some Examples

Three examples are provided to illustrate the general theory in this section.

Example 4.1. Let ๎๐œ‘(๐œ‰)=๐œ’๐ผ(๐œ‰), where ๐ผ=๐ผ+โˆช๐ผโˆ’, ๐ผโˆ’={๐œ‰โˆˆโ„2โˆฃโˆ’๐œ‰โˆˆ๐ผ+}, and ๐ผ+ is a triangle region with vertices (0,0),(๐›ผ,0),(๐›ผ,๐›ผ). Let ๎‚€๐‘Ž=2002๎‚, ๎‚€๐ต={1๐‘–01๎‚โˆถ๐‘–โˆˆโ„ค}, ๐‘†0={(๐œ‰1,๐œ‰2)โˆˆโ„2โˆถ0โ‰ค๐œ‰1โ‰ค๐›ผ,๐œ‰2โˆˆโ„}, ๐‘†๐‘—๎‚๐‘Ž=(๐‘—)๐‘†0. Define ๐‘‰๐‘—=๐ฟ2(๐‘†๐‘—)โˆจ. Then by Corollary 3.5, we get the following:(1)when ๐›ผโ‰ค1, ๐œ‘(๐‘ฅ) is a generator for an AB-RMRA;(2)when ๐›ผ>1, ๐œ‘(๐‘ฅ) is not a generator.

Example 4.2. Given ๐‘˜โˆˆโ„ค, let ๐ธ=[0,๐›ฝ0]2โ‹ƒโˆช(โˆ’1๐‘—=โˆ’๐‘˜[2๐‘—๐›ผ,2๐‘—๐›ฝ]2), where 0<๐›ฝ0โ‰ค2โˆ’๐‘˜๐›ผ, ๐›ผ<๐›ฝโ‰คmin{2๐›ผ,2๐‘˜+1๐›ฝ0,2}. If ๎๐œ‘=๐œ’๐ธ(โ‹…), then ๐œ‘ generates an AB-RMRA, where ๐‘†={(๐‘ฅ,๐‘ฆ)โˆถ๐‘ฅโ‰ฅ0,๐‘ฆโ‰ฅ0}, ๎‚€๐‘Ž=0220๎‚.

Example 4.3. Let ๐ธ=[0,1/4]2โˆช[3/8,3/8+๐œ€]2, where 0<๐œ€โ‰ค1/16. Assume that ๎๐œ‘=๐œ’๐ธ(โ‹…). Then ๐œ‘ generates an AB-RMRA, where ๐‘†={(๐‘ฅ,๐‘ฆ)โˆถ๐‘ฅโ‰ฅ0,๐‘ฆโ‰ฅ0}, ๎‚€๐‘Ž=2002๎‚.

Acknowledgments

The paper was supported by the National Natural Science Foundation of China (no. 61071189) and the Innovation Scientists and Technicians Troop Construction Projects of Henan Province of China (no. 084100510012).