Abstract

We have characterized a new type of core for double sequences, 𝑃𝐢-core, and determined the necessary and sufficient conditions on a four-dimensional matrix 𝐴 to yield 𝑃𝐢-core{𝐴π‘₯}βŠ†π›Ό(𝑃-core{π‘₯}) for all β„“βˆž2.

1. Introduction

A double sequence π‘₯=[π‘₯π‘—π‘˜]βˆžπ‘—,π‘˜=0 is said to be convergent in the Pringsheim sense or 𝑃-convergent if for every πœ–>0 there exists an π‘βˆˆβ„• such that |π‘₯π‘—π‘˜βˆ’β„“|<πœ€ whenever 𝑗,π‘˜>𝑁, [1]. In this case, we write π‘ƒβˆ’limπ‘₯=β„“. By 𝑐2, we mean the space of all 𝑃-convergent sequences.

A double sequence π‘₯ is bounded if β€–π‘₯β€–=sup𝑗,π‘˜β‰₯0||π‘₯π‘—π‘˜||<∞.(1.1) By β„“2∞, we denote the space of all bounded double sequences.

Note that, in contrast to the case for single sequences, a convergent double sequence need not be bounded. So, we denote by π‘βˆž2 the space of double sequences which are bounded and convergent.

A double sequence π‘₯=[π‘₯π‘—π‘˜] is said to converge regularly if it converges in Pringsheim's sense and, in addition, the following finite limits exist: limπ‘˜β†’βˆžπ‘₯π‘—π‘˜=ℓ𝑗,(𝑗=1,2,3,…),limπ‘—β†’βˆžπ‘₯π‘—π‘˜=𝑑𝑗,(π‘˜=1,2,3,…).(1.2) Let 𝐴=[π‘Žπ‘šπ‘›π‘—π‘˜]βˆžπ‘—,π‘˜=0 be a four-dimensional infinite matrix of real numbers for all π‘š,𝑛=0,1,…. The sums π‘¦π‘šπ‘›=βˆžξ“βˆžπ‘—=0ξ“π‘˜=0π‘Žπ‘šπ‘›π‘—π‘˜π‘₯π‘—π‘˜(1.3) are called the 𝐴-transforms of the double sequence π‘₯=[π‘₯π‘—π‘˜]. We say that a sequence π‘₯=[π‘₯π‘—π‘˜] is 𝐴-summable to the limit β„“ if the 𝐴-transform of π‘₯=[π‘₯π‘—π‘˜] exists for all π‘š,𝑛=0,1,… and is convergent to β„“ in the Pringsheim sense, that is, lim𝑝𝑝,π‘žβ†’βˆžξ“π‘žπ‘—=0ξ“π‘˜=0π‘Žπ‘šπ‘›π‘—π‘˜π‘₯π‘—π‘˜=π‘¦π‘šπ‘›,limπ‘š,π‘›β†’βˆžπ‘¦π‘šπ‘›=β„“.(1.4)

We say that a matrix 𝐴 is bounded-regular if every bounded-convergent sequence π‘₯ is 𝐴-summable to the same limit and the 𝐴-transforms are also bounded. The necessary and sufficient conditions for 𝐴 to be bounded-regular or RH-regular (cf., Robison [2]) are limπ‘š,π‘›β†’βˆžπ‘Žπ‘šπ‘›π‘—π‘˜=0,(𝑗,π‘˜=0,1,…),limβˆžπ‘š,π‘›β†’βˆžξ“βˆžπ‘—=0ξ“π‘˜=0π‘Žπ‘šπ‘›π‘—π‘˜=1,limβˆžπ‘š,π‘›β†’βˆžξ“π‘—=0||π‘Žπ‘šπ‘›π‘—π‘˜||=0,(π‘˜=0,1,…),limβˆžπ‘š,π‘›β†’βˆžξ“π‘˜=0||π‘Žπ‘šπ‘›π‘—π‘˜||=0,(𝑗=0,1,…),βˆžβˆ‘βˆžπ‘—=0βˆ‘π‘˜=0||π‘Žπ‘šπ‘›π‘—π‘˜||.≀𝐢<∞(π‘š,𝑛=0,1,…)(1.5) A double sequence π‘₯=[π‘₯π‘—π‘˜] is said to be almost convergent (see [3]) to a number 𝐿 if lim𝑝,π‘žβ†’βˆžsup𝑠,𝑑β‰₯01π‘π‘žπ‘ξ“π‘žπ‘—=0ξ“π‘˜=0π‘₯𝑠+𝑗,𝑑+π‘˜=𝐿.(1.6) Let 𝜎 be a one-to-one mapping from β„• into itself. The almost convergence of double sequences has been generalized to the 𝜎-convergence in [4] as follows: lim𝑝,π‘žβ†’βˆžsup𝑠,𝑑β‰₯01π‘π‘žπ‘ξ“π‘žπ‘—=0ξ“π‘˜=0π‘₯πœŽπ‘—(𝑠),πœŽπ‘˜(𝑑)=β„“,(1.7) where πœŽπ‘—(𝑠)=𝜎(πœŽπ‘—βˆ’1(𝑠)). In this case, we write πœŽβˆ’limπ‘₯=β„“. By 𝑉2𝜎, we denote the set of all 𝜎-convergent and bounded double sequences. One can see that in contrast to the case for single sequences, a convergent double sequence need not be 𝜎-convergent. But every bounded convergent double sequence is 𝜎-convergent. So, π‘βˆž2βŠ‚π‘‰2πœŽβŠ‚β„“βˆž2. In the case 𝜎(𝑖)=𝑖+1, 𝜎-convergence of double sequences reduces to the almost convergence. A matrix 𝐴=[π‘Žπ‘šπ‘›π‘—π‘˜]βˆžπ‘—,π‘˜=0 is said to be 𝜎-regular if 𝐴π‘₯βˆˆπ‘‰πœŽ2 for π‘₯=[π‘₯π‘—π‘˜]βˆˆπ‘βˆž2 with πœŽβˆ’lim𝐴π‘₯=limπ‘₯, and we denote this by 𝐴∈(π‘βˆž2,π‘‰πœŽ2)reg, (see [5, 6]). Mursaleen and Mohiuddine defined and characterized 𝜎-conservative and 𝜎-coercive matrices for double sequences [6].

A double sequence π‘₯=[π‘₯π‘—π‘˜] of real numbers is said to be CesΓ‘ro convergent (or 𝐢1-convergent) to a number L if and only if π‘₯∈𝐢1, where 𝐢1=ξ‚»π‘₯βˆˆβ„“βˆž2∢lim𝑝,π‘žβ†’βˆžπ‘‡π‘π‘ž(π‘₯)=𝐿;𝐿=𝐢1ξ‚Ό,π‘‡βˆ’limπ‘₯π‘π‘ž(1π‘₯)=(𝑝+1)(π‘ž+1)π‘ξ“π‘žπ‘—=1ξ“π‘˜=1π‘₯π‘šπ‘›π‘—π‘˜.(1.8) We shall denote by 𝐢1 the space of CesΓ‘ro convergent (𝐢1-convergent) double sequences.

A matrix 𝐴=(π‘Žπ‘šπ‘›π‘—π‘˜) is said to be 𝐢1-multiplicative if 𝐴π‘₯∈𝐢1 for π‘₯=[π‘₯π‘—π‘˜]βˆˆπ‘βˆž2 with 𝐢1βˆ’lim𝐴π‘₯=𝛼limπ‘₯, and in this case we write 𝐴∈(π‘βˆž2,𝐢1)𝛼. Note that if 𝛼=1, then 𝐢1-multiplicative matrices are said to be 𝐢1-regular matrices.

Recall that the Knopp core (or K-core) of a real number single sequence π‘₯=(π‘₯π‘˜) is defined by the closed interval [β„“(π‘₯),𝐿(π‘₯)], where β„“(π‘₯)=liminfπ‘₯ and 𝐿(π‘₯)=limsupπ‘₯. The well-known Knopp core theorem states (cf., Maddox [7] and Knopp [8]) that in order that 𝐿(𝐴π‘₯)≀𝐿(π‘₯) for every bounded real sequence π‘₯, it is necessary and sufficient that 𝐴=(π‘Žπ‘›π‘˜) should be regular and limπ‘›β†’βˆžβˆ‘βˆžπ‘˜=0|π‘Žπ‘›π‘˜|=1. Patterson [9] extended this idea for double sequences by defining the Pringsheim core (or P-core) of a real bounded double sequence π‘₯=[π‘₯π‘—π‘˜] as the closed interval [π‘ƒβˆ’liminfπ‘₯,π‘ƒβˆ’limsupπ‘₯]. Some inequalities related to the these concepts have been studied in [5, 9, 10]. Let πΏβˆ—(π‘₯)=limsup𝑝,π‘žβ†’βˆžsup𝑠,𝑑1π‘π‘žπ‘ξ“π‘žπ‘—=0ξ“π‘˜=0π‘₯𝑗+𝑠,π‘˜+𝑑,𝐢𝜎(π‘₯)=limsup𝑝,π‘žβ†’βˆžsup𝑠,𝑑1π‘π‘žπ‘ξ“π‘žπ‘—=0ξ“π‘˜=0π‘₯πœŽπ‘—(𝑠),πœŽπ‘˜(𝑑).(1.9)

Then, MR- (Moricz-Rhoades) and 𝜎-core of a double sequence have been introduced by the closed intervals [βˆ’πΏβˆ—(βˆ’π‘₯),πΏβˆ—(βˆ’π‘₯)] and [βˆ’πΆπœŽ(βˆ’π‘₯),𝐢𝜎(π‘₯)], and also the inequalities 𝐿(𝐴π‘₯)β‰€πΏβˆ—(π‘₯),πΏβˆ—(𝐴π‘₯)≀𝐿(π‘₯),πΏβˆ—(𝐴π‘₯)β‰€πΏβˆ—(π‘₯),𝐿(𝐴π‘₯)β‰€πΆπœŽ(π‘₯),𝐢𝜎(𝐴π‘₯)≀𝐿(π‘₯)(1.10) have been studies in [3–5, 11].

In this paper, we introduce the concept of 𝐢1-multiplicative matrices and determine the necessary and sufficient conditions for a matrix 𝐴=(π‘Žπ‘šπ‘›π‘—π‘˜) to belong to the class (π‘βˆž2,𝐢1)𝛼. Further we investigate the necessary and sufficient conditions for the inequality πΆβˆ—1(𝐴π‘₯)≀𝛼𝐿(π‘₯)(1.11) for all π‘₯βˆˆβ„“2∞.

2. Main Results

Let us write πΆβˆ—1(π‘₯)=limsup𝑝,π‘žβ†’βˆž1(𝑝+1)(π‘ž+1)π‘ξ“π‘žπ‘—=0ξ“π‘˜=0π‘₯π‘—π‘˜.(2.1) Then, we will define the 𝑃𝐢-core of a realvalued bounded double sequence π‘₯=[π‘₯π‘—π‘˜] by the closed interval [βˆ’πΆβˆ—1(βˆ’π‘₯),πΆβˆ—1(π‘₯)]. Since every bounded convergent double sequence is CesΓ‘ro convergent, we have πΆβˆ—1(π‘₯)β‰€π‘ƒβˆ’limsupπ‘₯, and hence it follows that 𝑃𝐢-core(π‘₯)βŠ†π‘ƒ-core(π‘₯) for a bounded double sequence π‘₯=[π‘₯π‘—π‘˜].

Lemma 2.1 .. A matrix 𝐴=(π‘Žπ‘šπ‘›π‘—π‘˜) is 𝐢1-multiplicative if and only if lim𝑝,π‘žβ†’βˆžπ›½(𝑗,π‘˜,𝑝,π‘ž)=0(𝑗,π‘˜=0,1,…),(2.2)limβˆžπ‘,π‘žβ†’βˆžξ“βˆžπ‘—=0ξ“π‘˜=0𝛽(𝑗,π‘˜,𝑝,π‘ž)=𝛼,(2.3)limβˆžπ‘,π‘žβ†’βˆžξ“π‘—=0||||𝛽(𝑗,π‘˜,𝑝,π‘ž)=0(π‘˜=0,1,…),(2.4)limβˆžπ‘,π‘žβ†’βˆžξ“π‘˜=0||||𝛽(𝑗,π‘˜,𝑝,π‘ž)=0(𝑗=0,1,…),(2.5)βˆžξ“βˆžπ‘—=0ξ“π‘˜=0||π‘Žπ‘šπ‘›π‘—π‘˜||≀𝐢<∞,(π‘š,𝑛=0,1,…),(2.6) where the lim means π‘ƒβˆ’lim and 1𝛽(𝑗,π‘˜,𝑝,π‘ž)=(𝑝+1)(π‘ž+1)π‘ξ“π‘žπ‘—=0ξ“π‘˜=0π‘Žπ‘šπ‘›π‘—π‘˜.(2.7)

Proof. Sufficiency. Suppose that the conditions (2.2)-(2.6) hold and π‘₯=[π‘₯π‘—π‘˜]βˆˆπ‘βˆž2 with π‘ƒβˆ’lim𝑗,π‘˜π‘₯π‘—π‘˜=𝐿, say. So that for every πœ–>0 there exists 𝑁>0 such that |π‘₯π‘—π‘˜|<|β„“|+πœ– whenever 𝑗,π‘˜>𝑁.
Then, we can write βˆžξ“βˆžπ‘—=0ξ“π‘˜=0𝛽(𝑗,π‘˜,𝑝,π‘ž)π‘₯π‘—π‘˜=𝑁𝑁𝑗=0ξ“π‘˜=0𝛽(𝑗,π‘˜,𝑝,π‘ž)π‘₯π‘—π‘˜+βˆžξ“π‘—=π‘π‘βˆ’1ξ“π‘˜=0𝛽(𝑗,π‘˜,𝑝,π‘ž)π‘₯π‘—π‘˜+π‘βˆ’1ξ“βˆžπ‘—=0ξ“π‘˜=𝑁𝛽(𝑗,π‘˜,𝑝,π‘ž)π‘₯π‘—π‘˜+βˆžξ“βˆžπ‘—=𝑁+1ξ“π‘˜=𝑁+1𝛽(𝑗,π‘˜,𝑝,π‘ž)π‘₯π‘—π‘˜.(2.8) Therefore, |||||βˆžξ“βˆžπ‘—=0ξ“π‘˜=0𝛽(𝑗,π‘˜,𝑝,π‘ž)π‘₯π‘—π‘˜|||||≀‖π‘₯‖𝑁𝑁𝑗=0ξ“π‘˜=0||||𝛽(𝑗,π‘˜,𝑝,π‘ž)+β€–π‘₯β€–βˆžξ“π‘—=π‘π‘βˆ’1ξ“π‘˜=0||𝛽(𝑗,π‘˜,𝑝,π‘ž)π‘₯π‘—π‘˜||+β€–π‘₯β€–π‘βˆ’1ξ“βˆžπ‘—=0ξ“π‘˜=𝑁||||+ξ€·||𝐿||ξ€Έ|||||𝛽(𝑗,π‘˜,𝑝,π‘ž)+πœ–βˆžξ“βˆžπ‘—=𝑁+1ξ“π‘˜=𝑁+1|||||.𝛽(𝑗,π‘˜,𝑝,π‘ž)(2.9) Letting 𝑝,π‘žβ†’βˆž and using the conditions (2.2)–(2.6), we get |||||limβˆžπ‘,π‘žβ†’βˆžξ“βˆžπ‘—=0ξ“π‘˜=0𝛽(𝑗,π‘˜,𝑝,π‘ž)π‘₯π‘—π‘˜|||||≀||𝐿||ξ€Έ+πœ–π›Ό.(2.10) Since πœ– is arbitrary, 𝐢1βˆ’lim𝐴π‘₯=𝛼𝐿. Hence 𝐴∈(π‘βˆž2,𝐢1)𝛼, that is, 𝐴 is 𝐢1-multiplicative.

Necessity. Suppose that A is 𝐢1-multiplicative. Then, by the definition, the A-transform of π‘₯ exists and 𝐴π‘₯∈𝐢1 for each π‘₯βˆˆπ‘βˆž2. Therefore, 𝐴π‘₯ is also bounded. Then, we can write supβˆžπ‘š,π‘›ξ“βˆžπ‘—=0ξ“π‘˜=0||π‘Žπ‘šπ‘›π‘—π‘˜π‘₯π‘—π‘˜||<𝑀<∞,(2.11) for each π‘₯βˆˆπ‘βˆž2. Now, let us define a sequence 𝑦=[π‘¦π‘—π‘˜] by π‘¦π‘—π‘˜=ξƒ―sgnπ‘Žπ‘šπ‘›π‘—π‘˜,0β‰€π‘—β‰€π‘Ÿ,0β‰€π‘˜β‰€π‘Ÿ,0,otherwise,(2.12) β€‰π‘š,𝑛=0,1,2,…. Then, the necessity of (10) follows by considering the sequence 𝑦=[π‘¦π‘—π‘˜] in (2.11).
Also, by the assumption, we have limβˆžπ‘,π‘žβ†’βˆžξ“βˆžπ‘—=0ξ“π‘˜=0𝛽(𝑗,π‘˜,𝑝,π‘ž)π‘₯π‘—π‘˜=𝛼lim𝑗,π‘˜β†’βˆžπ‘₯π‘—π‘˜.(2.13) Now let us define the sequence 𝑒𝑖𝑙 as follows: 𝑒𝑖𝑙=ξƒ―1,(𝑗,π‘˜)=(𝑖,𝑙),0,otherwise,(2.14) and write 𝑠𝑙=βˆ‘π‘–π‘’π‘–π‘™(π‘™βˆˆβ„•), π‘Ÿπ‘–=βˆ‘π‘™π‘’π‘–π‘™(π‘–βˆˆβ„•). Then, the necessity of (2.2), (2.4), and (2.5) follows from 𝐢1βˆ’lim𝐴𝑒𝑖𝑙, 𝐢1βˆ’limπ΄π‘Ÿπ‘— and 𝐢1βˆ’limπ΄π‘ π‘˜, respectively.

Note that when 𝛼=1, the above theorem gives the characterization of 𝐴∈(π‘βˆž2,𝐢1)reg. Now, we are ready to construct our main theorem.

Theorem 2.2. For every bounded double sequence x, πΆβˆ—1(𝐴π‘₯)≀𝛼𝐿(π‘₯),(2.15) or (π‘ƒπΆβˆ’π‘π‘œπ‘Ÿπ‘’{𝐴π‘₯}βŠ†π›Ό(π‘ƒβˆ’π‘π‘œπ‘Ÿπ‘’{π‘₯})) if and only if 𝐴 is 𝐢1-multiplicative and limsupβˆžπ‘,π‘žβ†’βˆžξ“βˆžπ‘—=0ξ“π‘˜=0||||𝛽(𝑗,π‘˜,𝑝,π‘ž)=𝛼.(2.16)

Proof. Necessity. Let (2.15) hold and for all π‘₯βˆˆβ„“2∞. So, since π‘βˆž2βŠ‚β„“2∞, then, we get 𝛼(βˆ’πΏ(βˆ’π‘₯))β‰€βˆ’πΆβˆ—1(βˆ’π΄π‘₯)β‰€πΆβˆ—1(𝐴π‘₯)≀𝛼𝐿(π‘₯).(2.17) That is, 𝛼liminfπ‘₯β‰€βˆ’πΆβˆ—1(βˆ’π΄π‘₯)β‰€πΆβˆ—1(𝐴π‘₯)≀𝛼limsupπ‘₯,(2.18) where βˆ’πΆβˆ—1(βˆ’π΄π‘₯)=liminfβˆžπ‘,π‘žβ†’βˆžξ“βˆžπ‘—=0ξ“π‘˜=0𝛽(𝑗,π‘˜,𝑝,π‘ž)π‘₯π‘—π‘˜.(2.19) By choosing π‘₯=[π‘₯π‘—π‘˜]βˆˆπ‘2∞, we get from (2.17) that βˆ’πΆβˆ—1(βˆ’π΄π‘₯)=πΆβˆ—1(𝐴π‘₯)=𝐢1βˆ’lim𝐴π‘₯=𝛼limπ‘₯.(2.20) This means that 𝐴 is 𝐢1-multiplicative.
By Lemma  3.1 of Patterson [9], there exists a π‘¦βˆˆβ„“2∞ with ||𝑦||≀1 such that πΆβˆ—1(𝐴𝑦)=limsupβˆžπ‘,π‘žβ†’βˆžξ“βˆžπ‘—=0ξ“π‘˜=0𝛽(𝑗,π‘˜,𝑝,π‘ž).(2.21) If we choose 𝑦=𝑣=[π‘£π‘—π‘˜], it follows π‘£π‘—π‘˜=ξƒ―1if𝑗=π‘˜,0,elsewhere.(2.22) Since β€–π‘£π‘—π‘˜β€–β‰€1, we have from (2.15) that 𝛼=πΆβˆ—1(𝐴𝑣)=limsupβˆžπ‘,π‘žβ†’βˆžξ“βˆžπ‘—=0ξ“π‘˜=0||||𝑣𝛽(𝑗,π‘˜,𝑝,π‘ž)β‰€π›ΌπΏπ‘—π‘˜ξ€Έβ‰€π›Όβ€–π‘£β€–β‰€π›Ό.(2.23) This gives the necessity of (2.16).

Sufficiency. Suppose that 𝐴 is 𝐢1-regular and (2.16) holds. Let π‘₯=[π‘₯π‘—π‘˜] be an arbitrary bounded sequence. Then, there exist 𝑀,𝑁>0 such that π‘₯π‘—π‘˜β‰€πΎ for all 𝑗,π‘˜β‰₯0. Now, we can write the following inequality: |||||βˆžξ“βˆžπ‘—=0ξ“π‘˜=0𝛽(𝑗,π‘˜,𝑝,π‘ž)π‘₯π‘—π‘˜|||||=|||||βˆžξ“βˆžπ‘—=0ξ“π‘˜=0ξ‚΅||𝛽||(𝑗,π‘˜,𝑝,π‘ž)+𝛽(𝑗,π‘˜,𝑝,π‘ž)2βˆ’||||𝛽(𝑗,π‘˜,𝑝,π‘ž)βˆ’π›½(𝑗,π‘˜,𝑝,π‘ž)2ξ‚Άπ‘₯π‘—π‘˜||||β‰€βˆžξ“βˆžπ‘—=0ξ“π‘˜=0||𝛽||||π‘₯(𝑗,π‘˜,𝑝,π‘ž)π‘—π‘˜||+βˆžξ“βˆžπ‘—=0ξ“π‘˜=0||ξ€·||𝛽||ξ€Έπ‘₯(𝑗,π‘˜,𝑝,π‘ž)βˆ’π›½(𝑗,π‘˜,𝑝,π‘ž)π‘—π‘˜||≀‖π‘₯‖𝑀𝑁𝑗=0ξ“π‘˜=0||||𝛽(𝑗,π‘˜,𝑝,π‘ž)+β€–π‘₯β€–βˆžξ“π‘π‘—=𝑀+1ξ“π‘˜=0||||𝛽(𝑗,π‘˜,𝑝,π‘ž)+β€–π‘₯β€–π‘€ξ“βˆžπ‘—=0ξ“π‘˜=𝑁+1||||𝛽(𝑗,π‘˜,𝑝,π‘ž)+sup𝑗,π‘˜β‰₯𝑀,𝑁||π‘₯π‘—π‘˜||βˆžξ“βˆžπ‘—=𝑀+1ξ“π‘˜=𝑁+1||||𝛽(𝑗,π‘˜,𝑝,π‘ž)+β€–π‘₯β€–βˆžξ“βˆžπ‘—=0ξ“π‘˜=0ξ€·||||ξ€Έ.𝛽(𝑗,π‘˜,𝑝,π‘ž)βˆ’π›½(𝑗,π‘˜,𝑝,π‘ž)(2.24) Using the condition of 𝐢1-multiplicative and condition (2.16), we get πΆβˆ—1(𝐴π‘₯)≀𝛼𝐿(π‘₯).(2.25) This completes the proof of the theorem.

Theorem 2.3. For π‘₯,π‘¦βˆˆβ„“βˆž2, if 𝐢1βˆ’lim|π‘₯βˆ’π‘¦|=0, then 𝐢1βˆ’core{π‘₯}=𝐢1βˆ’core{𝑦}.

Proof. Since 𝐢2βˆ’lim|π‘₯βˆ’π‘¦|=0, we have 𝐢1βˆ’lim(π‘₯βˆ’π‘¦)=0 and 𝐢1βˆ’lim(βˆ’(π‘₯βˆ’π‘¦))=0. Using definition of 𝐢1βˆ’core, we take πΆβˆ—1(π‘₯βˆ’π‘¦)=βˆ’πΆβˆ—1(βˆ’(π‘₯βˆ’π‘¦))=0. Since πΆβˆ—1 is sublinear, 0=βˆ’πΆβˆ—1(βˆ’(π‘₯βˆ’π‘¦))β‰€βˆ’πΆβˆ—1(βˆ’π‘₯)βˆ’πΆβˆ—1(𝑦).(2.26) Therefore, πΆβˆ—1(𝑦)β‰€βˆ’πΆβˆ—1(βˆ’π‘₯). Since βˆ’πΆβˆ—1(βˆ’π‘₯)β‰€πΆβˆ—1(π‘₯), this implies that πΆβˆ—1(𝑦)β‰€πΆβˆ—1(π‘₯).By an argument similar as above, we can show that πΆβˆ—1(π‘₯)β‰€πΆβˆ—1(𝑦). This completes the proof.

Acknowledgment

The authors would like to state their deep thanks to the referees for their valuable suggestions improving the paper.