`Abstract and Applied AnalysisVolume 2012, Article ID 195310, 11 pageshttp://dx.doi.org/10.1155/2012/195310`
Research Article

## The Solution of a Class of Third-Order Boundary Value Problems by the Reproducing Kernel Method

1Department of Mathematics, Inner Mongolia University of Technology, Hohhot 010051, China
2Jining Teachers College, Jining 012000, China

Received 1 July 2012; Accepted 20 September 2012

Copyright © 2012 Zhiyuan Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. J. Rashidinia and M. Ghasemi, “B-spline collocation for solution of two-point boundary value problems,” Journal of Computational and Applied Mathematics, vol. 235, no. 8, pp. 2325–2342, 2011.
2. H. N. Caglar, S. H. Caglar, and E. H. Twizell, “The numerical solution of third-order boundary-value problems with fourth-degree B-spline functions,” International Journal of Computer Mathematics, vol. 71, no. 3, pp. 373–381, 1999.
3. A. Khan and T. Aziz, “The numerical solution of third-order boundary-value problems using quintic splines,” Applied Mathematics and Computation, vol. 137, no. 2-3, pp. 253–260, 2003.
4. I. A. Tirmizi, E. H. Twizell, and Siraj-Ul-Islam, “A numerical method for third-order non-linear boundary-value problems in engineering,” International Journal of Computer Mathematics, vol. 82, no. 1, pp. 103–109, 2005.
5. M. Tatari and M. Dehghan, “The use of the Adomian decomposition method for solving multipoint boundary value problems,” Physica Scripta, vol. 73, no. 6, pp. 672–676, 2006.
6. M. Haque, M. H. Baluch, and M. F. N. Mohsen, “Solution of multiple point nonlinear boundary value problems by method of weighted residuals,” International Journal of Computer Mathematics, vol. 18, no. 3, pp. 341–354, 1986.
7. Y.-l. Wang and L. Chao, “Using reproducing kernel for solving a class of partial differential equation with variable-coefficients,” Applied Mathematics and Mechanics, vol. 29, no. 1, pp. 129–137, 2008.
8. Y. L. Wang, Z. Y. Li, Y. Cao, and X. H. Wan, “A new method for solving a class of mixed boundary value problems with singular coefficient,” Applied Mathematics and Computation, vol. 217, no. 6, pp. 2768–2772, 2010.
9. Z. Chen and Z.-J. Chen, “The exact solution of system of linear operator equations in reproducing kernel spaces,” Applied Mathematics and Computation, vol. 203, no. 1, pp. 56–61, 2008.
10. Y. L. Wang, C. L. Temuer, and J. Pang, “New algorithm for second-order boundary value problems of integro-differential equation,” Journal of Computational and Applied Mathematics, vol. 229, no. 1, pp. 1–6, 2009.
11. S. Islam, S. I. A. Tirmizi, and M. A. Khan, “Non-polynomial splines approachto the solution of asystem of third-order boundary-value problems,” Applied Mathematics Computation, vol. 168, no. 1, pp. 125–163, 2005.
12. M. A. Noor and E. E. Al-Said, “Quartic splines solutions of third-order obstacle problems,” Applied Mathematics and Computation, vol. 153, no. 2, pp. 307–316, 2004.
13. E. A. Al-Said, “Numerical solutions for system of third-order boundary value problems,” International Journal of Computer Mathematics, vol. 78, no. 1, pp. 111–121, 2001.
14. E. A. Al-Said and M. A. Noor, “Cubic splines method for a system of third-order boundary value problems,” Applied Mathematics and Computation, vol. 142, no. 2-3, pp. 195–204, 2003.
15. M. A. Noor and A. K. Khalifa, “A numerical approach for odd-order obstacle problems,” International Journal of Computer Mathematics, vol. 54, no. 1, pp. 109–116, 1994.
16. E. A. Al-Said, M. A. Noor, and A. K. Khalifa, “Finite difference scheme for variational inequalities,” Journal of Optimization Theory and Applications, vol. 89, no. 2, pp. 453–459, 1996.
17. F. Gao and C.-M. Chi, “Solving third-order obstacle problems with quartic B-splines,” Applied Mathematics and Computation, vol. 180, no. 1, pp. 270–274, 2006.