Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
Volume 2012, Article ID 306272, 21 pages
Research Article

Uniqueness in Inverse Electromagnetic Conductive Scattering by Penetrable and Inhomogeneous Obstacles with a Lipschitz Boundary

School of Mathematics and Information Science, Yantai University, Yantai, Shandong 264005, China

Received 26 August 2012; Accepted 6 December 2012

Academic Editor: Yong Hong Wu

Copyright © 2012 Fenglong Qu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This paper is concerned with the problem of scattering of time-harmonic electromagnetic waves by a penetrable, inhomogeneous, Lipschitz obstacle covered with a thin layer of high conductivity. The well posedness of the direct problem is established by the variational method. The inverse problem is also considered in this paper. Under certain assumptions, a uniqueness result is obtained for determining the shape and location of the obstacle and the corresponding surface parameter from the knowledge of the near field data, assuming that the incident fields are electric dipoles located on a large sphere with polarization . Our results extend those in the paper by F. Hettlich (1996) to the case of inhomogeneous Lipschitz obstacles.