`Abstract and Applied AnalysisVolume 2012, Article ID 793486, 17 pageshttp://dx.doi.org/10.1155/2012/793486`
Research Article

## Generalized đťś¶ - đťťŤ Contractive Type Mappings and Related Fixed Point Theorems with Applications

1Department of Mathematics, Atilim University, İncek, 06836 Ankara, Turkey
2Department of Mathematics, King Saud University, Riyadh 11451, Saudi Arabia

Received 28 May 2012; Accepted 25 July 2012

Copyright © 2012 Erdal Karapınar and Bessem Samet. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. B. Samet, C. Vetro, and P. Vetro, â€śFixed point theorems for α-ψ contractive type mappings,â€ť Nonlinear Analysis. Theory, Methods and Applications A, vol. 75, no. 4, pp. 2154â€“2165, 2012.
2. V. Berinde, Iterative Approximation of Fixed Points, Editura Efemeride, Baia Mare, Romania, 2002.
3. L. B. \'Cirić, â€śFixed points for generalized multi-valued contractions,â€ť Matematički Vesnik, vol. 9, no. 24, pp. 265â€“272, 1972.
4. G. E. Hardy and T. D. Rogers, â€śA generalization of a fixed point theorem of Reich,â€ť Canadian Mathematical Bulletin, vol. 16, pp. 201â€“206, 1973.
5. S. Banach, â€śSur les operations dans les ensembles abstraits et leur application aux equations itegrales,â€ť Fundamenta Mathematicae, vol. 3, pp. 133â€“181, 1922.
6. R. Kannan, â€śSome results on fixed points,â€ť Bulletin of the Calcutta Mathematical Society, vol. 10, pp. 71â€“76, 1968.
7. S. K. Chatterjea, â€śFixed-point theorems,â€ť Comptes Rendus de l'Académie Bulgare des Sciences, vol. 25, pp. 727â€“730, 1972.
8. M. Turinici, â€śAbstract comparison principles and multivariable Gronwall-Bellman inequalities,â€ť Journal of Mathematical Analysis and Applications, vol. 117, no. 1, pp. 100â€“127, 1986.
9. A. C. M. Ran and M. C. B. Reurings, â€śA fixed point theorem in partially ordered sets and some applications to matrix equations,â€ť Proceedings of the American Mathematical Society, vol. 132, no. 5, pp. 1435â€“1443, 2004.
10. R. P. Agarwal, M. A. El-Gebeily, and D. O'Regan, â€śGeneralized contractions in partially ordered metric spaces,â€ť Applicable Analysis, vol. 87, no. 1, pp. 109â€“116, 2008.
11. I. Altun and H. Simsek, â€śSome fixed point theorems on ordered metric spaces and application,â€ť Fixed Point Theory and Applications, vol. 2010, Article ID 621469, 17 pages, 2010.
12. L. Ćirić, N. Cakić, M. Rajović, and J. S. Ume, â€śMonotone generalized nonlinear contractions in partially ordered metric spaces,â€ť Fixed Point Theory and Applications, vol. 2008, Article ID 131294, 11 pages, 2008.
13. J. Harjani and K. Sadarangani, â€śFixed point theorems for weakly contractive mappings in partially ordered sets,â€ť Nonlinear Analysis. Theory, Methods and Applications A, vol. 71, no. 7-8, pp. 3403â€“3410, 2009.
14. A. Petruşel and I. A. Rus, â€śFixed point theorems in ordered L-spaces,â€ť Proceedings of the American Mathematical Society, vol. 134, no. 2, pp. 411â€“418, 2006.
15. B. Samet, â€śCoupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces,â€ť Nonlinear Analysis. Theory, Methods and Applications A, vol. 72, no. 12, pp. 4508â€“4517, 2010.
16. J. J. Nieto and R. Rodríguez-López, â€śContractive mapping theorems in partially ordered sets and applications to ordinary differential equations,â€ť Order, vol. 22, no. 3, pp. 223â€“239, 2005.
17. W. A. Kirk, P. S. Srinivasan, and P. Veeramani, â€śFixed points for mappings satisfying cyclical contractive conditions,â€ť Fixed Point Theory, vol. 4, no. 1, pp. 79â€“89, 2003.
18. R. P. Agarwal, M. A. Alghamdi, and N. Shahzad, â€śFixed point theory for cyclic generalized contractions in partial metric spaces,â€ť Fixed Point Theory and Applications, vol. 2012, article 40, 2012.
19. E. Karapınar, â€śFixed point theory for cyclic weak ϕ-contraction,â€ť Applied Mathematics Letters, vol. 24, no. 6, pp. 822â€“825, 2011.
20. E. Karapınar and K. Sadaranagni, â€śFixed point theory for cyclic (ϕ-ψ)-contractions,â€ť Fixed Point Theory and Applications, vol. 2011, article 69, 2011.
21. M. Păcurar and I. A. Rus, â€śFixed point theory for cyclic φ-contractions,â€ť Nonlinear Analysis. Theory, Methods and Applications A, vol. 72, no. 3-4, pp. 1181â€“1187, 2010.
22. M. A. Petric, â€śSome results concerning cyclical contractive mappings,â€ť General Mathematics, vol. 18, no. 4, pp. 213â€“226, 2010.
23. I. A. Rus, â€śCyclic representations and fixed points,â€ť Annals of the Tiberiu Popoviciu Seminar of Functional Equations, Approximation and Convexity, vol. 3, pp. 171â€“178, 2005.