/ / Article
Special Issue

## Advanced Theoretical and Applied Studies of Fractional Differential Equations

View this Special Issue

Research Article | Open Access

Volume 2012 |Article ID 963105 | https://doi.org/10.1155/2012/963105

Chuanzhi Bai, "Existence of Three Solutions for a Nonlinear Fractional Boundary Value Problem via a Critical Points Theorem", Abstract and Applied Analysis, vol. 2012, Article ID 963105, 13 pages, 2012. https://doi.org/10.1155/2012/963105

# Existence of Three Solutions for a Nonlinear Fractional Boundary Value Problem via a Critical Points Theorem

Revised08 Jul 2012
Accepted09 Jul 2012
Published06 Sep 2012

#### Abstract

This paper is concerned with the existence of three solutions to a nonlinear fractional boundary value problem as follows: where , and is a positive real parameter. The approach is based on a critical-points theorem established by G. Bonanno.

#### 1. Introduction

Differential equations with fractional order have recently proved to be strong tools in the modeling of many physical phenomena in various fields of physical, chemical, biology, engineering, and economics. There has been significant development in fractional differential equations, one can see the monographs  and the papers  and the references therein.

Critical-point theory, which proved to be very useful in determining the existence of solution for integer-order differential equation with some boundary conditions, for example, one can refer to . But till now, there are few results on the solution to fractional boundary value problem which were established by the critical-point theory, since it is often very difficult to establish a suitable space and variational functional for fractional boundary value problem. Recently, Jiao and Zhou  investigated the following fractional boundary value problem: by using the critical point theory, where and are the left and right Riemann-Liouville fractional integrals of order , respectively, is a given function and is the gradient of at .

In this paper, by using the critical-points theorem established by Bonanno in , a new approach is provided to investigate the existence of three solutions to the following fractional boundary value problems: where , and are the left and right Riemann-Liouville fractional integrals of order respectively, and are the left and right Caputo fractional derivatives of order respectively, is a positive real parameter, is a continuous function, and is a nonnegative continuous function with .

#### 2. Preliminaries

In this section, we first introduce some necessary definitions and properties of the fractional calculus which are used in this paper.

Definition 2.1 (see ). Let be a function defined on . The left and right Riemann-Liouville fractional integrals of order for function denoted by and , respectively, are defined by provided the right-hand sides are pointwise defined on , where is the gamma function.

Definition 2.2 (see ). Let and .
(i) If and , then the left and right Caputo fractional derivatives of order for function denoted by and , respectively, exist almost everywhere on , and are represented by respectively.
(ii) If and , then and are represented by
With these definitions, we have the rule for fractional integration by parts, and the composition of the Riemann-Liouville fractional integration operator with the Caputo fractional differentiation operator, which were proved in [2, 5].

Property 1 (see [2, 5]). We have the following property of fractional integration: provided that , , and , , or , , .

Property 2 (see ). Let and . If or , then for . In particular, if and or , then

Remark 2.3. In view of Property 1 and Definition 2.2, it is obvious that is a solution of BVP (1.2) if and only if is a solution of the following problem: where .

In order to establish a variational structure for BVP (1.2), it is necessary to construct appropriate function spaces.

Denote by the set of all functions with .

Definition 2.4 (see ). Let . The fractional derivative space is defined by the closure of with respect to the norm

Remark 2.5. It is obvious that the fractional derivative space is the space of functions having an -order Caputo fractional derivative and .

Proposition 2.6 (see ). Let . The fractional derivative space is reflexive and separable Banach space.

Lemma 2.7 (see ). Let . For all , one has the following:(i) (ii)

By (2.9), we can consider with respect to the norm in the following analysis.

Lemma 2.8 (see ). Let , then for all any , one has

Our main tool is the critical-points theorem  which is recalled below.

Theorem 2.9 2.9(see ). Let be a separable and reflexive real Banach space; be a nonnegative continuously Gateaux differentiable and sequentially weakly lower semicontinuous functional whose Gateaux derivative admits a continuous inverse on ; be a continuously Gateaux differentiable function whose Gateaux derivative is compact. Assume that there exists such that , and that(i), for all . Further, assume that there are , such that(ii);(iii). Then, for each the equation has at least three solutions in and, moreover, for each , there exists an open interval and a positive real number such that, for each , (2.14) has at least three solutions in whose norms are less than .

#### 3. Main Result

For given , we define functionals as follows: where . Clearly, and are Gateaux differentiable functional whose Gateaux derivative at the point are given by for every . By Definition 2.2 and Property 2, we have Hence, . If is a critical point of , then for . We can choose such that The theory of Fourier series and (3.4) imply that a.e. on for some . By (3.6), it is easy to know that is a solution of BVP (1.2).

By Lemma 2.7, if , we have for each that where

Given two constants and , with , where as in (3.8).

For convenience, set

Theorem 3.1. Let be a continuous function,   be a nonnegative continuous function with , and . Put for every , and assume that there exist four positive constants , and , with and , such that(H1),  for  all ;(H2) for all , and where . Then, for each where and denote and respectively,the problem (1.2) admits at least three solutions in and, moreover, for each , there exists an open interval such that, for each , the problem (1.2) admits at least three solutions in whose norms are less that .

Proof. Let be the functionals defined in the above. By the Lemma 5.1 in , is continuous and convex, hence it is weakly sequentially lower semicontinuous. Moreover, is coercive, continuously Gateaux differentiable functional whose Gateaux derivative admits a continuous inverse on . The functional is well defined, continuously Gateaux differentiable and with compact derivative. It is well known that the critical point of the functional in is exactly the solution of BVP (1.2).

From (H1) and (2.12), we get for all [. Put It is easy to check that and . The direct calculation shows That is, . Thus, . Moreover, the direct calculation shows

Let . Since , we obtain .

By (2.12) and (3.7), one has . Thus,

Moreover, we have

Hence, from (H2) one has

Now, taking into account that Thus, by Theorem 2.9 it follows that, for each , BVP (1.2) admits at least three solutions, and there exists an open interval and a real positive number such that, for each , BVP (1.2) admits at least three solutions in whose norms are less than .

Finally, we give an example to show the effectiveness of the results obtained here.

Let , , , and . Then BVP (1.2) reduces to the following boundary value problem:

Example 3.2. Owing to Theorem 3.1, for each , BVP (3.21) admits at least three solutions. In fact, put and , it is easy to calculate that , , and Since we have that condition (H1) holds. Moreover, for each , and which implies that condition (H2) holds. Thus, by Theorem 3.1, for each , the problem (3.21) admits at least three nontrivial solutions in . Moreover, for each , there exists an open interval and a real positive number such that, for each , the problem (3.21) admits at least three solutions in whose norms are less than .

#### Acknowledgments

The author thanks the reviewers for their suggestions and comments which improved the presentation of this paper. This work is supported by Natural Science Foundation of Jiangsu Province (BK2011407) and Natural Science Foundation of China (10771212).

1. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, NY, USA, 1993. View at: Zentralblatt MATH
2. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Longhorne, Pa, USA, 1993. View at: Zentralblatt MATH
3. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, Calif, USA, 1999. View at: Zentralblatt MATH
4. R. Hilfer, Applications of Fractional Calculus in Physics, World Scientic, Singapore, Singapore, 2000.
5. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Dierential Equations, Elsevier, Amsterdam, The Netherlands, 2006.
6. V. Lakshmikantham and A. S. Vatsala, “Basic theory of fractional differential equations,” Nonlinear Analysis. Theory, Methods & Applications, vol. 69, no. 8, pp. 2677–2682, 2008.
7. R. P. Agarwal, M. Benchohra, and S. Hamani, “A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions,” Acta Applicandae Mathematicae, vol. 109, no. 3, pp. 973–1033, 2010. View at: Publisher Site | Google Scholar
8. B. Ahmad and J. J. Nieto, “Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions,” Computers & Mathematics with Applications, vol. 58, no. 9, pp. 1838–1843, 2009.
9. Z. Bai and H. Lü, “Positive solutions for boundary value problem of nonlinear fractional differential equation,” Journal of Mathematical Analysis and Applications, vol. 311, no. 2, pp. 495–505, 2005.
10. C. Bai, “Impulsive periodic boundary value problems for fractional differential equation involving Riemann-Liouville sequential fractional derivative,” Journal of Mathematical Analysis and Applications, vol. 384, no. 2, pp. 211–231, 2011.
11. C. Bai, “Solvability of multi-point boundary value problem of nonlinear impulsive fractional differential equation at resonance,” Electronic Journal of Qualitative Theory of Differential Equations, vol. 89, pp. 1–19, 2011. View at: Google Scholar
12. M. Benchohra, S. Hamani, and S. K. Ntouyas, “Boundary value problems for differential equations with fractional order and nonlocal conditions,” Nonlinear Analysis. Theory, Methods & Applications, vol. 71, no. 7-8, pp. 2391–2396, 2009.
13. N. Kosmatov, “Integral equations and initial value problems for nonlinear differential equations of fractional order,” Nonlinear Analysis. Theory, Methods & Applications, vol. 70, no. 7, pp. 2521–2529, 2009.
14. J. Wang and Y. Zhou, “A class of fractional evolution equations and optimal controls,” Nonlinear Analysis. Real World Applications, vol. 12, no. 1, pp. 262–272, 2011.
15. J. Wang and Y. Zhou, “Existence and controllability results for fractional semilinear differential inclusions,” Nonlinear Analysis. Real World Applications, vol. 12, no. 6, pp. 3642–3653, 2011.
16. J. Wang, Y. Zhou, and W. Wei, “Optimal feedback control for semilinear fractional evolution equations in Banach spaces,” Systems and Control Letters, vol. 61, no. 4, pp. 472–476, 2012. View at: Publisher Site | Google Scholar
17. J. Wang, Y. Zhou, and M. Medved, “On the solvability and optimal controls of fractional integrodifferential evolution systems with infinite delay,” Journal of Optimization Theory and Applications, vol. 152, no. 1, pp. 31–50, 2012. View at: Publisher Site | Google Scholar
18. J. Wang, M. Fěčkan, and Y. Zhou, “On the new concept of solutions and existence results for impulsive fractional evolution equations,” Dynamics of Partial Differential Equations, vol. 8, no. 4, pp. 345–361, 2011. View at: Google Scholar
19. Z. Wei, W. Dong, and J. Che, “Periodic boundary value problems for fractional differential equations involving a Riemann-Liouville fractional derivative,” Nonlinear Analysis. Theory, Methods & Applications, vol. 73, no. 10, pp. 3232–3238, 2010.
20. S. Zhang, “Positive solutions to singular boundary value problem for nonlinear fractional differential equation,” Computers & Mathematics with Applications, vol. 59, no. 3, pp. 1300–1309, 2010.
21. P. H. Rabinowitz, “Minimax methods in critical point theory with applications to differential equations,” in Proceedings of the Conference Board of the Mathematical Sciences (CBMS '86), vol. 65, American Mathematical Society, 1986. View at: Google Scholar
22. J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York, NY, USA, 1989.
23. F. Li, Z. Liang, and Q. Zhang, “Existence of solutions to a class of nonlinear second order two-point boundary value problems,” Journal of Mathematical Analysis and Applications, vol. 312, no. 1, pp. 357–373, 2005.
24. C.-L. Tang and X.-P. Wu, “Some critical point theorems and their applications to periodic solution for second order Hamiltonian systems,” Journal of Differential Equations, vol. 248, no. 4, pp. 660–692, 2010.
25. J.-N. Corvellec, V. V. Motreanu, and C. Saccon, “Doubly resonant semilinear elliptic problems via nonsmooth critical point theory,” Journal of Differential Equations, vol. 248, no. 8, pp. 2064–2091, 2010.
26. F. Jiao and Y. Zhou, “Existence of solutions for a class of fractional boundary value problems via critical point theory,” Computers & Mathematics with Applications, vol. 62, no. 3, pp. 1181–1199, 2011.
27. G. Bonanno, “A critical points theorem and nonlinear differential problems,” Journal of Global Optimization, vol. 28, no. 3-4, pp. 249–258, 2004.

#### More related articles

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.