Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 350647, 9 pages
http://dx.doi.org/10.1155/2013/350647
Research Article

The Flow and Heat Transfer of a Nanofluid Past a Stretching/Shrinking Sheet with a Convective Boundary Condition

1Department of Mathematics and Statistics, Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia, Batu Pahat, 86400 Parit Raja, Johor, Malaysia
2School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia

Received 26 June 2013; Revised 2 September 2013; Accepted 3 September 2013

Academic Editor: Jianzhong Lin

Copyright © 2013 Syahira Mansur and Anuar Ishak. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. G. Fischer, Extrusion of Plastics, Wiley, New York, NY, USA, 1976.
  2. L. J. Crane, “Flow past a stretching plate,” Journal of Applied Mathematics and Physics, vol. 21, no. 4, pp. 645–647, 1970. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Y. Wang, “Analysis of viscous flow due to a stretching sheet with surface slip and suction,” Nonlinear Analysis: Real World Applications, vol. 10, no. 1, pp. 375–380, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  4. B. Sahoo, “Flow and heat transfer of a non-Newtonian fluid past a stretching sheet with partial slip,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 3, pp. 602–615, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  5. M. Miklavčič and C. Y. Wang, “Viscous flow due to a shrinking sheet,” Quarterly of Applied Mathematics, vol. 64, no. 2, pp. 283–290, 2006. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  6. T. Fang, S. Yao, J. Zhang, and A. Aziz, “Viscous flow over a shrinking sheet with a second order slip flow model,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 7, pp. 1831–1842, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  7. K. Bhattacharyya, S. Mukhopadhyay, and G. C. Layek, “Slip effects on boundary layer stagnation-point flow and heat transfer towards a shrinking sheet,” International Journal of Heat and Mass Transfer, vol. 54, no. 1–3, pp. 308–313, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  8. S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivities of fluids with nanoparticles,” in Proceedings of the ASME International Mechanical Engineering Congress and Exposition, San Francisco, Calif, USA, 1995.
  9. H. Masuda, A. Ebata, K. Teramae, and N. Hishinuma, “Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles,” Netsu Bussei, vol. 7, pp. 227–233, 1993. View at Google Scholar
  10. M. M. Rahman, M. A. Al-Lawatia, I. A. Eltayeb, and N. Al-Salti, “Hydromagnetic slip flow of water based nanofluids past a wedge with convective surface in the presence of heat generation (or) absorption,” International Journal of Thermal Sciences, vol. 57, pp. 172–182, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Xuan and Q. Li, “Heat transfer enhancement of nanofluids,” International Journal of Heat and Fluid Flow, vol. 21, no. 1, pp. 58–64, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Xuan and W. Roetzel, “Conceptions for heat transfer correlation of nanofluids,” International Journal of Heat and Mass Transfer, vol. 43, no. 19, pp. 3701–3707, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  13. S. Lee, S. U. S. Choi, S. Li, and J. A. Eastman, “Measuring thermal conductivity of fluids containing oxide nanoparticles,” Journal of Heat Transfer, vol. 121, no. 2, pp. 280–288, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. R. K. Tiwari and M. K. Das, “Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids,” International Journal of Heat and Mass Transfer, vol. 50, no. 9-10, pp. 2002–2018, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  15. J. Buongiorno, “Convective transport in nanofluids,” Journal of Heat Transfer, vol. 128, no. 3, pp. 240–250, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. D. A. Nield and A. V. Kuznetsov, “The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid,” International Journal of Heat and Mass Transfer, vol. 52, no. 25-26, pp. 5792–5795, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  17. D. A. Nield and A. V. Kuznetsov, “Thermal instability in a porous medium layer saturated by a nanofluid,” International Journal of Heat and Mass Transfer, vol. 52, no. 25-26, pp. 5796–5801, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  18. D. A. Nield and A. V. Kuznetsov, “The Cheng-Minkowycz problem for the double-diffusive natural convective boundary layer flow in a porous medium saturated by a nanofluid,” International Journal of Heat and Mass Transfer, vol. 54, no. 1–3, pp. 374–378, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  19. A. V. Kuznetsov and D. A. Nield, “Natural convective boundary-layer flow of a nanofluid past a vertical plate,” International Journal of Thermal Sciences, vol. 49, no. 2, pp. 243–247, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. A. V. Kuznetsov and D. A. Nield, “Double-diffusive natural convective boundary-layer flow of a nanofluid past a vertical plate,” International Journal of Thermal Sciences, vol. 50, no. 5, pp. 712–717, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. W. A. Khan and I. Pop, “Boundary-layer flow of a nanofluid past a stretching sheet,” International Journal of Heat and Mass Transfer, vol. 53, no. 11-12, pp. 2477–2483, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  22. N. Bachok, A. Ishak, and I. Pop, “Boundary-layer flow of nanofluids over a moving surface in a flowing fluid,” International Journal of Thermal Sciences, vol. 49, no. 9, pp. 1663–1668, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Bachok, A. Ishak, and I. Pop, “Unsteady boundary-layer flow and heat transfer of a nanofluid over a permeable stretching/shrinking sheet,” International Journal of Heat and Mass Transfer, vol. 55, no. 7-8, pp. 2102–2109, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. W. A. Khan and A. Aziz, “Natural convection flow of a nanofluid over a vertical plate with uniform surface heat flux,” International Journal of Thermal Sciences, vol. 50, no. 7, pp. 1207–1214, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Aziz, “A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 4, pp. 1064–1068, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Ishak, “Similarity solutions for flow and heat transfer over a permeable surface with convective boundary condition,” Applied Mathematics and Computation, vol. 217, no. 2, pp. 837–842, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  27. O. D. Makinde and A. Aziz, “Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition,” International Journal of Thermal Sciences, vol. 50, no. 7, pp. 1326–1332, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. P. S. Gupta and A. S. Gupta, “Heat and mass transfer on a stretching sheet with suction or blowing,” The Canadian Journal of Chemical Engineering, vol. 55, no. 6, pp. 744–746, 1977. View at Publisher · View at Google Scholar
  29. A. Ishak, R. Nazar, and I. Pop, “Heat transfer over an unsteady stretching permeable surface with prescribed wall temperature,” Nonlinear Analysis: Real World Applications, vol. 10, no. 5, pp. 2909–2913, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  30. A. Rasekh, D. D. Ganji, and S. Tavakoli, “Numerical solutions for a nanofluid past over a stretching circular cylinder with non-uniform heat source,” Frontiers in Heat and Mass Transfer, vol. 3, pp. 1–6, 2012. View at Publisher · View at Google Scholar
  31. J. H. Merkin, “On dual solutions occurring in mixed convection in a porous medium,” Journal of Engineering Mathematics, vol. 20, no. 2, pp. 171–179, 1986. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  32. P. D. Weidman, D. G. Kubitschek, and A. M. J. Davis, “The effect of transpiration on self-similar boundary layer flow over moving surfaces,” International Journal of Engineering Science, vol. 44, no. 11-12, pp. 730–737, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  33. A. Postelnicu and I. Pop, “Falkner-Skan boundary layer flow of a power-law fluid past a stretching wedge,” Applied Mathematics and Computation, vol. 217, no. 9, pp. 4359–4368, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus