Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
Volume 2013, Article ID 490123, 6 pages
http://dx.doi.org/10.1155/2013/490123
Research Article

The Fundamental Aspects of TEMOM Model for Particle Coagulation due to Brownian Motion—Part II: In the Continuum Regime

State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China

Received 24 August 2013; Revised 13 November 2013; Accepted 3 December 2013

Academic Editor: Shuyu Sun

Copyright © 2013 He Qing and Xie Mingliang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. H. Park, K. W. Lee, E. Otto, and H. Fissan, “The log-normal size distribution theory of Brownian aerosol coagulation for the entire particle size range. Part I: analytical solution using the harmonic mean coagulation kernel,” Journal of Aerosol Science, vol. 30, no. 1, pp. 3–16, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. S. K. Friedlander, Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics, Oxford University Press, London, UK, 2nd edition, 2000.
  3. M. Z. Yu, J. Z. Lin, and T. L. Chan, “A new moment method for solving the coagulation equation for particles in Brownian motion,” Aerosol Science and Technology, vol. 42, no. 9, pp. 705–713, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. S. S. Talukdar and M. T. Swihart, “Aerosol dynamics modeling of silicon nanoparticle formation during silane pyrolysis: a comparison of three solution methods,” Journal of Aerosol Science, vol. 35, no. 7, pp. 889–908, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. N. M. Morgan, C. G. Wells, M. J. Goodson, M. Kraft, and W. Wagner, “A new numerical approach for the simulation of the growth of inorganic nanoparticles,” Journal of Computational Physics, vol. 211, no. 2, pp. 638–658, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. S. E. Pratsinis, “Simultaneous nucleation, condensation, and coagulation in aerosol reactors,” Journal of Colloid And Interface Science, vol. 124, no. 2, pp. 416–427, 1988. View at Google Scholar · View at Scopus
  7. E. Otto, F. Stratmann, H. Fissan, S. Vemury, and S. E. Pratsinis, “39 P 17 Brownian coagulation in the transition regime II: a comparison of two modelling approaches,” Journal of Aerosol Science, vol. 24, no. 1, pp. S535–S536, 1993. View at Google Scholar · View at Scopus
  8. M.-Z. Yu, J.-Z. Lin, and T.-L. Chan, “Effect of precursor loading on non-spherical TiO2 nanoparticle synthesis in a diffusion flame reactor,” Chemical Engineering Science, vol. 63, no. 9, pp. 2317–2329, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. R. R. Upadhyay and O. A. Ezekoye, “Evaluation of the 1-point quadrature approximation in QMOM for combined aerosol growth laws,” Journal of Aerosol Science, vol. 34, no. 12, pp. 1665–1683, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. R. McGraw, “Description of aerosol dynamics by the quadrature method of moments,” Aerosol Science and Technology, vol. 27, no. 2, pp. 255–265, 1997. View at Google Scholar · View at Scopus
  11. R. O. Fox, Computational Models for Turbulent Reacting Flows, Cambridge University Press, Cambridge, UK, 2003.
  12. M. Z. Yu and J. Z. Lin, “Taylor-expansion moment method for agglomerate coagulation due to Brownian motion in the entire size regime,” Journal of Aerosol Science, vol. 40, no. 6, pp. 549–562, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Z. Yu and J. Z. Lin, “Solution of the agglomerate Brownian coagulation using Taylor-expansion moment method,” Journal of Colloid and Interface Science, vol. 336, no. 1, pp. 142–149, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Z. Yu and J. Z. Lin, “Binary homogeneous nucleation and growth of water-sulfuric acid nanoparticles using a TEMOM model,” International Journal of Heat and Mass Transfer, vol. 53, no. 4, pp. 635–644, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Z. Yu, J. Z. Lin, H. H. Jin, and Y. Jiang, “The verification of the Taylor-expansion moment method for the nanoparticle coagulation in the entire size regime due to Brownian motion,” Journal of Nanoparticle Research, vol. 13, no. 5, pp. 2007–2020, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. M. L. Xie, M. Z. Yu, and L. P. Wang, “A TEMOM model to simulate nanoparticle growth in the temporal mixing layer due to Brownian coagulation,” Journal of Aerosol Science, vol. 54, pp. 32–48, 2012. View at Google Scholar
  17. E. Otto, H. Fissan, S. H. Park, and K. W. Lee, “The log-normal size distribution theory of Brownian aerosol coagulation for the entire particle size range. Part II: analytical solution using Dahneke's coagulation kernel,” Journal of Aerosol Science, vol. 30, no. 1, pp. 17–34, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. M. L. Xie and L. P. Wang, “Asymptotic solution of population balance equation based on TEMOM model,” Chemical Engineering Science, vol. 94, pp. 79–83, 2013. View at Google Scholar
  19. M. L. Xie and Q. He, “Analytical solution of TEMOM model for particle coagulation due to Brownian motion,” Journal of Aerosol Science, vol. 66, pp. 24–30, 2013. View at Google Scholar