Research Article | Open Access

# On Inequalities of Lyapunov for Two-Dimensional Nonlinear Dynamic Systems on Time Scales

**Academic Editor:**Allan Peterson

#### Abstract

We establish some new Lyapunov-type inequalities for two-dimensional nonlinear dynamic systems on time scales. As for application, boundedness of the Emden-Fowler-type equation is proved.

#### 1. Introduction

In this paper, we establish some Lyapunov-type inequalities for the following two-dimensional nonlinear dynamic system: wherea time scale,denotes the delta derivative with respect to, anddenotes the delta derivative with respect to.

Lyapunov-type inequalities have proven to be very useful in the study of qualitative behavior of solutions such as oscillation, disconjugacy, and eigenvalue problems for differential equations and difference equations. Since the appearance of Lyapunov's fundamental paper [1], considerable attention has been given to various extensions and improvements of the Lyapunov-type inequality from different viewpoints [2–8]. Although Lyapunov-type inequalities are well developed for the continuous cases, their time scale versions are still in early stages and are worth due attention.

Recently, He et al. in [2] considered the linear Hamiltonian system and obtained several useful Lyapunov-type inequalities.

Chen et al. in [3] considered the nonlinear system and obtained some interesting Lyapunov-type inequalities for partial differential equations.

In this paper, under the assumption of existence of a nontrivial solutionto the 2-dimensional nonlinear dynamic system (1), some new and interesting Lyapunov-type inequalities are established.

#### 2. Main Results

Throughout this paper, the following mild and natural conditions are assumed:(i),are real constants,(ii), ,are rd-continuous functions such thatfor, where, andis the forward jump operator; that is,.

Theorem 1. *If the nonlinear dynamic system (1) has a real solutionwhich is not identically zero onsatisfyingandfor all, wherewith, , then
**
where,, and.*

*Proof. *From the conditionsandis not identically zero on, there existssuch that.

Multiplying the first equation of (1) byand the second one byand adding up, we get
and, hence,
Integrating the left hand side of (6) overfromtoand then overfromto, we get
Noting that, we have
On the other hand, integrating the first equation of (1) overfromtoand then overfromto, we get
By the boundary conditions on, it is elementary to verify that
and so
Hence,
By similar arguments, we easily get
Summing (12) and (13) and by Hölder's inequality with indicesand, we obtain

In view of (8), we have
and so
The proof is complete.

*Remark 2. *It is interesting to note that whenTheorem 1 reduces to Theoremof [3].

Theorem 3. *If the nonlinear dynamic system (1) has a real solutionwhich is not identically zero onsatisfying,,, andfor all, wherewith,, then
**
whereand,are as defined in Theorem 1.*

*Proof. *Choosesuch that. Note that. From (6) and
we have
By the boundary conditions on, it is elementary to check that
So
For the fixed, by, there existssuch that
Integrating the first equation of (1) overfromto, we obtain
Multiplying (23) byand noting that, we get
Letting, we get
By (22) and (25), we obtain
Substituting (26) into (21), we get
Immitating the arguments from (21) to (27) step by step, we have
By, there existssuch that
Integrating the first equation of (1) overfromtoand using, we get
and, hence,
Let
Then, (27) can be written as
and (31) can be written as
It follows from (33) and (34) that
Using (19),,, and Hölder's inequality, we have
Therefore,
The proof is complete.

Theorem 4. *Suppose thatandare conjugate exponents; that is,. If the nonlinear dynamic system (1) has a real solutionwhich is not identically zero onsuch thatandfor all, wherewith, then
*

*Proof. *By (6) and the conditionsfor all, we have
So
Fixsuch that. Integrating the first equation of (1) overfromtoand then overfromto, we get
and so by Hölder's inequality with indicesandwe have

Hence,
The proof is complete.

Theorem 5. *Suppose thatandare conjugate exponents. If the nonlinear dynamic system (1) has a real solutionwhich is not identically zero onsuch thatandfor all, wherewith, then
*

*Proof. *By (6) and the assumption thatfor all, we get
So
Fixsuch that. Integrating the first equation of (1) overfromtoand then overfromto, we get
and so by Hölder's inequality with indicesandwe have
Hence,
The proof is complete.

*Remark 6. *Analogously, we can also consider the cases (i)and (ii). Similar results to those in Theorem 4 and Theorem 5 can easily be arrived at. The detailed proofs are omitted here.

Next, we exhibit an application of our results. Consider the following special case of (1):

*Definition 7. *A nontrivial solutionof the dynamic equation (50) defined onis said to be *proper* if
for all, A proper solutionof the dynamic system (50) is called *weakly oscillatory* if at least one argument has a sequence of zeros diverging to.

Theorem 8. *Assume thatis bounded onfor a fixed,is bounded onfor a fixed,
**
then every weakly oscillatory proper solution of (50) is bounded on*

* Proof. *Letbe a nontrivial weakly oscillatory proper solution of (50) onandhave a sequence of zeros diverging to. Suppose that; then, for any positive constant, there existssuch that,Sinceis an oscillatory solution, there existssuch that,on, and. From (52), we can choosesufficiently large such that
By Theorem 1, we have
and so
which contradicts. Hence, there exists a positive constantsuch that.

Integrating the second equation of the dynamic equation (50) overfromtoand then overfromto, respectively, we get
Sinceis bounded onfor a fixedandis bounded onfor a fixed, we get

Since,is bounded. Sois bounded onThe proof is complete.

#### Acknowledgments

The first author's research was supported by NNSF of China (11071054) and Natural Science Foundation of Hebei Province (A2011205012). The corresponding author's research was partially supported by an HKU URG Grant.

#### References

- A. M. Lyapunov, “Problém général de la stabilité du mouvement,”
*Annales de la Faculté des Sciences de l'Université de Toulouse*, vol. 9, no. 2, pp. 203–474, 1907. View at: Google Scholar - X. He, Q.-M. Zhang, and X. Tang, “On inequalities of Lyapunov for linear Hamiltonian systems on time scales,”
*Journal of Mathematical Analysis and Applications*, vol. 381, no. 2, pp. 695–705, 2011. View at: Publisher Site | Google Scholar | MathSciNet - L.-Y. Chen, C.-J. Zhao, and W.-S. Cheung, “On Lyapunov-type inequalities for two-dimensional nonlinear partial systems,”
*Journal of Inequalities and Applications*, vol. 2010, Article ID 504982, 12 pages, 2010. View at: Publisher Site | Google Scholar | MathSciNet - X. Wang, “Lyapunov type inequalities for second-order half-linear differential equations,”
*Journal of Mathematical Analysis and Applications*, vol. 382, no. 2, pp. 792–801, 2011. View at: Publisher Site | Google Scholar | MathSciNet - M. Bohner, S. Clark, and J. Ridenhour, “Lyapunov inequalities for time scales,”
*Journal of Inequalities and Applications*, vol. 7, no. 1, pp. 61–77, 2002. View at: Publisher Site | Google Scholar | MathSciNet - X.-H. Tang and M. Zhang, “Lyapunov inequalities and stability for linear Hamiltonian systems,”
*Journal of Differential Equations*, vol. 252, no. 1, pp. 358–381, 2012. View at: Publisher Site | Google Scholar | MathSciNet - A. Cañada, J. A. Montero, and S. Villegas, “Lyapunov inequalities for partial differential equations,”
*Journal of Functional Analysis*, vol. 237, no. 1, pp. 176–193, 2006. View at: Publisher Site | Google Scholar | MathSciNet - X. Yang, “On inequalities of Lyapunov type,”
*Applied Mathematics and Computation*, vol. 134, no. 2-3, pp. 293–300, 2003. View at: Publisher Site | Google Scholar | MathSciNet

#### Copyright

Copyright © 2013 Qiao-Luan Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.