Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 864865, 11 pages
Research Article

A Fourth-Order Block-Grid Method for Solving Laplace's Equation on a Staircase Polygon with Boundary Functions in

Department of Mathematics, Eastern Mediterranean University, Gazimagusa, North Cyprus, Mersin 10, Turkey

Received 30 April 2013; Accepted 11 May 2013

Academic Editor: Allaberen Ashyralyev

Copyright © 2013 A. A. Dosiyev and S. Cival Buranay. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The integral representations of the solution around the vertices of the interior reentered angles (on the “singular” parts) are approximated by the composite midpoint rule when the boundary functions are from These approximations are connected with the 9-point approximation of Laplace's equation on each rectangular grid on the “nonsingular” part of the polygon by the fourth-order gluing operator. It is proved that the uniform error is of order where and is the mesh step. For the -order derivatives ( ) of the difference between the approximate and the exact solutions, in each “ singular” part order is obtained; here is the distance from the current point to the vertex in question and is the value of the interior angle of the th vertex. Numerical results are given in the last section to support the theoretical results.