Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
Volume 2014, Article ID 103102, 8 pages
http://dx.doi.org/10.1155/2014/103102
Research Article

Structural Stiffness Identification Based on the Extended Kalman Filter Research

1School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
2Northeast Forestry University, Harbin 150040, China
3State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, CAS, Lanzhou 730000, China

Received 5 January 2014; Revised 24 March 2014; Accepted 27 March 2014; Published 21 May 2014

Academic Editor: Shuping He

Copyright © 2014 Fenggang Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

For the response acquisition of the structure section measuring points, the method of identifying the structural stiffness parameters is developed by using the extended Kalman filter. The state equation of structural system parameter is a nonlinear equation. Dispersing the structural dynamic equation by using Newmark- method, the state transition matrix of discrete state equation is deduced and the solution of discrete state equation is simplified. The numerical simulation shows that the error of structural recognition doesnot exceed 5% when the noise level is 3%. It meets the requirements of the error limit of the engineering structure, which indicates that the derivation described in this paper has the robustness for the structural stiffness recognition. Shear structure parameter identification examples illustrate its applicability, and the method can also be used to identify physical parameters of large structure.