Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
Volume 2014 (2014), Article ID 176253, 10 pages
http://dx.doi.org/10.1155/2014/176253
Research Article

A Novel Kernel for RBF Based Neural Networks

1Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia
2Centre of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
3Center of Excellence in Intelligent Engineering Systems (CEIES), King Abdulaziz University, Jeddah, Saudi Arabia

Received 10 April 2014; Revised 25 May 2014; Accepted 25 May 2014; Published 19 June 2014

Academic Editor: Dumitru Baleanu

Copyright © 2014 Wasim Aftab et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” The Bulletin of Mathematical Biophysics, vol. 5, no. 4, pp. 115–133, 1943. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  2. J. Khan, J. S. Wei, M. Ringnér et al., “Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks,” Nature Medicine, vol. 7, no. 6, pp. 673–679, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Zhang, B. E. Patuwo, and M. Y. Hu, “Forecasting with artificial neural networks: the state of the art,” International Journal of Forecasting, vol. 14, no. 1, pp. 35–62, 1998. View at Google Scholar · View at Scopus
  4. D. P. Bertsekas and J. N. Tsitsiklis, “Neuro-dynamic programming: an overview,” in Proceedings of the 34th IEEE Conference on Decision and Control, vol. 1, pp. 560–564, December 1995. View at Scopus
  5. S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall PTR, Upper Saddle River, NJ, USA, 1994.
  6. K. Fukushima, “Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position,” Biological Cybernetics, vol. 36, no. 4, pp. 193–202, 1980. View at Google Scholar · View at Scopus
  7. J. Park and I. W. Sandberg, “Universal approximation using radial-basis-function networks,” Neural Computation, vol. 3, no. 2, pp. 246–257, 1991. View at Publisher · View at Google Scholar
  8. F. Rosenblatt, “The perceptron: a probabilistic model for information storage and organization in the brain,” Psychological Review, vol. 65, no. 6, pp. 386–408, 1958. View at Publisher · View at Google Scholar · View at Scopus
  9. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986. View at Google Scholar · View at Scopus
  10. D. S. Broomhead and D. Lowe, “Multivariable functional interpolation and adaptive networks,” Complex Systems, vol. 2, no. 3, pp. 321–355, 1988. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. D. H. Ackley and G. E. Hinton, “A learning algorithm for boltzmann machines,” Cognitive Science, vol. 9, no. 1, pp. 147–169, 1985. View at Google Scholar · View at Scopus
  12. S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal least squares learning algorithm for radial basis function networks,” IEEE Transactions on Neural Networks, vol. 2, no. 2, pp. 302–309, 1991. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Leung, T. Lo, and S. Wang, “Prediction of noisy chaotic time series using an optimal radial basis function neural network,” IEEE Transactions on Neural Networks, vol. 12, no. 5, pp. 1163–1172, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Seshagiri and H. K. Khalil, “Output feedback control of nonlinear systems using RBF neural networks,” IEEE Transactions on Neural Networks, vol. 11, no. 1, pp. 69–79, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Platt, “A resource-allocating network for function interpolation,” Neural Computation, vol. 3, no. 2, pp. 213–225, 1991. View at Publisher · View at Google Scholar
  16. A. Krogh and J. Vedelsby, “Neural network ensembles, cross validation, and active learning,” in Advances in Neural Information Processing Systems, vol. 7, pp. 231–238, MIT Press, Cambridge, Mass, USA, 1995. View at Google Scholar
  17. D. Wettschereck and T. Dietterich, “Improving the performance of radial basis function networks by learning center locations,” in Advances in Neural Information Processing Systems, vol. 4, Morgan Kaufmann, San Mateo, Calif, USA, 1992. View at Google Scholar
  18. S. S. A. Ali, M. Moinuddin, K. Raza, and S. H. Adil, “An adaptive learning rate for RBFNN using time-domain feedback analysis,” The Scientific World Journal, vol. 2014, Article ID 850189, 9 pages, 2014. View at Publisher · View at Google Scholar
  19. M. T. Musavi, W. Ahmed, K. H. Chan, K. B. Faris, and D. M. Hummels, “On the training of radial basis function classifiers,” Neural Networks, vol. 5, no. 4, pp. 595–603, 1992. View at Google Scholar · View at Scopus
  20. R. J. Schilling, J. J. Carroll Jr., and A. F. Al-Ajlouni, “Approximation of nonlinear systems with radial basis function neural networks,” IEEE Transactions on Neural Networks, vol. 12, no. 1, pp. 1–15, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. M. J. Er, W. Chen, and S. Wu, “High-speed face recognition based on discrete cosine transform and RBF neural networks,” IEEE Transactions on Neural Networks, vol. 16, no. 3, pp. 679–691, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Rudzicz, “Articulatory knowledge in the recognition of dysarthric speech,” IEEE Transactions on Audio, Speech and Language Processing, vol. 19, no. 4, pp. 947–960, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. J. Zeng and J. D. Zhuang, “Construction cosine radial basic function neural networks based on artificial immune networks,” in Advanced Data Mining and Applications, vol. 6441 of Lecture Notes in Computer Science, pp. 134–141, Springer, Berlin, Germany, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Zhang, Y. Li, P. Scarf, and A. Ball, “Feature selection for high-dimensional machinery fault diagnosis data using multiple models and radial basis function networks,” Neurocomputing, vol. 74, no. 17, pp. 2941–2952, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. U. R. Acharya, F. Molinari, S. V. Sree, S. Chattopadhyay, K. Ng, and J. S. Suri, “Automated diagnosis of epileptic EEG using entropies,” Biomedical Signal Processing and Control, vol. 7, no. 4, pp. 401–408, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Sridhar and M. Krishna, “Brain tumor classification using discrete cosine transform and probabilistic neural network,” in Proceedings of the International Conference on Signal Processing, Image Processing and Pattern Recognition (ICSIPR '13), pp. 92–96, Coimbatore, India, February 2013. View at Publisher · View at Google Scholar · View at Scopus
  27. N. B. Karayiannis and M. M. Randolph-Gips, “On the construction and training of reformulated radial basis function neural networks,” IEEE Transactions on Neural Networks, vol. 14, no. 4, pp. 835–846, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. Liu, X. Zhao, M. J. Zuo, and H. Xu, “Feature selection for fault level diagnosis of planetary gearboxes,” Advances in Data Analysis and Classification, 2014. View at Publisher · View at Google Scholar
  29. Y. Cho and L. K. Saul, “Kernel methods for deep learning,” in Proceedings of the Annual Conference on Neural Information Processing Systems (NIPS '09), pp. 342–350, December 2009. View at Scopus
  30. N. B. Karayiannis and Y. Xiong, “Training reformulated radial basis function neural networks capable of identifying uncertainty in data classification,” IEEE Transactions on Neural Networks, vol. 17, no. 5, pp. 1222–1234, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. T. M. Cover, “Geometrical and Statistical properties of systems of linear inequalities with applications in pattern recognition,” IEEE Transactions on Electronic Computers, vol. 14, no. 3, pp. 326–334, 1965. View at Publisher · View at Google Scholar
  32. D. Psaltis, A. Sideris, and A. A. Yamamura, “A multilayered neural network controller,” IEEE Control Systems Magazine, vol. 8, no. 2, pp. 17–21, 1988. View at Google Scholar · View at Scopus
  33. P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation of cluster analysis,” Journal of Computational and Applied Mathematics, vol. 20, pp. 53–65, 1987. View at Google Scholar · View at Scopus
  34. L. I. Kuncheva, “A theoretical study on six classifier fusion strategies,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 2, pp. 281–286, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Mallah, J. Cope, and J. Orwell, “Plant leaf classification using probabilistic integration of shape, texture and margin features,” in Proceedings of the International Conference on Signal Processing, Pattern Recognition and Applications (SPPRA '13), pp. 279–286, February 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. K. S. Narendra and K. Parthasarathy, “Identification and control of dynamical systems using neural networks,” IEEE Transactions on Neural Networks, vol. 1, no. 1, pp. 4–27, 1990. View at Publisher · View at Google Scholar · View at Scopus
  37. V. T. S. Elanayar and Y. C. Shin, “Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems,” IEEE Transactions on Neural Networks, vol. 5, no. 4, pp. 594–603, 1994. View at Publisher · View at Google Scholar · View at Scopus
  38. R. P. Lippmann, “Pattern classification using neural networks,” IEEE Communications Magazine, vol. 27, no. 11, pp. 47–50, 1989. View at Publisher · View at Google Scholar · View at Scopus
  39. M. J. Er, S. Wu, J. Lu, and H. L. Toh, “Face recognition with radial basis function (RBF) neural networks,” IEEE Transactions on Neural Networks, vol. 13, no. 3, pp. 697–710, 2002. View at Publisher · View at Google Scholar · View at Scopus