Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
Volume 2014, Article ID 217630, 11 pages
http://dx.doi.org/10.1155/2014/217630
Research Article

Annual Energy Consumption Forecasting Based on PSOCA-GRNN Model

School of Economics and Management, North China Electric Power University, Beijing 102206, China

Received 27 May 2014; Revised 15 July 2014; Accepted 16 July 2014; Published 6 August 2014

Academic Editor: Mathiyalagan Kalidass

Copyright © 2014 Huiru Zhao and Sen Guo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Ma, P. Liu, F. Fu, Z. Li, and W. Ni, “Integrated energy strategy for the sustainable development of China,” Energy, vol. 36, no. 2, pp. 1143–1154, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Schaeffer, A. S. Szklo, A. F. Pereira de Lucena et al., “Energy sector vulnerability to climate change: a review,” Energy, vol. 38, no. 1, pp. 1–12, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Yu, Y. Wei, and K. Wang, “China's primary energy demands in 2020: predictions from an MPSO-RBF estimation model,” Energy Conversion and Management, vol. 61, pp. 59–66, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Ş. Ediger and S. Akar, “ARIMA forecasting of primary energy demand by fuel in Turkey,” Energy Policy, vol. 35, no. 3, pp. 1701–1708, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. U. Kumar and V. K. Jain, “Time series models (Grey-Markov, Grey Model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India,” Energy, vol. 35, no. 4, pp. 1709–1716, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. H. T. Pao, H. C. Fu, and C. L. Tseng, “Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model,” Energy, vol. 40, no. 1, pp. 400–409, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Huang, Y. J. Bor, and C. Peng, “The long-term forecast of Taiwan's energy supply and demand: LEAP model application,” Energy Policy, vol. 39, no. 11, pp. 6790–6803, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Ünler, “Improvement of energy demand forecasts using swarm intelligence: the case of Turkey with projections to 2025,” Energy Policy, vol. 36, no. 6, pp. 1937–1944, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. A. H. Neto and F. A. S. Fiorelli, “Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption,” Energy and Buildings, vol. 40, no. 12, pp. 2169–2176, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. M. S. Kıran, E. Özceylan, M. Gündüz et al., “A novel hybrid approach based on particle swarm optimization and ant colony algorithm to forecast energy demand of Turkey,” Energy Conversion and Management, vol. 53, no. 1, pp. 75–83, 2012. View at Google Scholar
  11. H. Li, S. Guo, H. Zhao, C. Su, and B. Wang, “Annual electric load forecasting by a least squares support vector machine with a fruit fly optimization algorithm,” Energies, vol. 5, no. 11, pp. 4430–4445, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. J. M. L. Sloughter, T. Gneiting, and A. E. Raftery, “Probabilistic wind spread forecasting using ensembles and Bayesian model averaging,” Journal of the American Statistical Association, vol. 105, no. 489, pp. 25–35, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  13. C. Yeh, C. Huang, and S. Lee, “A multiple-kernel support vector regression approach for stock market price forecasting,” Expert Systems with Applications, vol. 38, no. 3, pp. 2177–2186, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Y. Chen, W. I. Lee, H. M. Kuo, and K. Chen, “The study of a forecasting sales model for fresh food,” Expert Systems with Applications, vol. 37, no. 12, pp. 7696–7702, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Hadavandi, H. Shavandi, and A. Ghanbari, “Integration of genetic fuzzy systems and artificial neural networks for stock price forecasting,” Knowledge-Based Systems, vol. 23, no. 8, pp. 800–808, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. D. A. Fadare, “The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria,” Applied Energy, vol. 87, no. 3, pp. 934–942, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Guo, D. Rivero, and A. Pazos, “Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks,” Journal of Neuroscience Methods, vol. 193, no. 1, pp. 156–163, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Singhal and K. S. Swarup, “Electricity price forecasting using artificial neural networks,” International Journal of Electrical Power and Energy Systems, vol. 33, no. 3, pp. 550–555, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. D. F. Specht, “A general regression neural network,” IEEE Transactions on Neural Networks, vol. 2, no. 6, pp. 568–576, 1991. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Singh, V. Vishal, T. N. Singh, and P. G. Ranjith, “A comparative study of generalized regression neural network approach and adaptive neuro-fuzzy inference systems for prediction of unconfined compressive strength of rocks,” Neural Computing and Applications, vol. 23, no. 2, pp. 499–506, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. M. T. Leung, A. S. Chen, and H. Daouk, “Forecasting exchange rates using general regression neural networks,” Computers and Operations Research, vol. 27, no. 11-12, pp. 1093–1110, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. W. Y. Lee, J. M. House, and N. H. Kyong, “Subsystem level fault diagnosis of a building's air-handling unit using general regression neural networks,” Applied Energy, vol. 77, no. 2, pp. 153–170, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. H. K. Cigizoglu and M. Alp, “Generalized regression neural network in modelling river sediment yield,” Advances in Engineering Software, vol. 37, no. 2, pp. 63–68, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Nose-Filho, A. D. P. Lotufo, and C. R. Minussi, “Short-term multinodal load forecasting using a modified general regression neural network,” IEEE Transactions on Power Delivery, vol. 26, no. 4, pp. 2862–2869, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Orhan, F. Temurtas, and A. Ç. Tanrikulu, “Tuberculosis disease diagnosis using artificial neural networks,” Journal of Medical Systems, vol. 34, no. 3, pp. 299–302, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Chen and C. Yu, “Motion control with deadzone estimation and compensation using GRNN for TWUSM drive system,” Expert Systems with Applications, vol. 36, no. 8, pp. 10931–10941, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. S. C. Chelgani and E. Jorjani, “Microwave irradiation pretreatment and peroxyacetic acid desulfurization of coal and application of GRNN simultaneous predictor,” Fuel, vol. 90, no. 11, pp. 3156–3163, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Li, S. Guo, C. Li, and J. Sun, “A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm,” Knowledge-Based Systems, vol. 37, pp. 378–387, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Proceedings of the 6th International Symposium on Micro Machine and Human Science, vol. 1, pp. 39–43, 1995.
  30. T. A. A. Victoire and A. E. Jeyakumar, “Hybrid PSO-SQP for economic dispatch with valve-point effect,” Electric Power Systems Research, vol. 71, no. 1, pp. 51–59, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Liu, L. Wang, and Y. Jin, “An effective PSO-based memetic algorithm for flow shop scheduling,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 37, no. 1, pp. 18–27, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. A. Bashir and M. E. El-Hawary, “Applying wavelets to short-term load forecasting using PSO-based neural networks,” IEEE Transactions on Power Systems, vol. 24, no. 1, pp. 20–27, 2009. View at Google Scholar
  33. Ö. Polat and T. Yıldırım, “Genetic optimization of GRNN for pattern recognition without feature extraction,” Expert Systems with Applications, vol. 34, no. 4, pp. 2444–2448, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Theodosiou, “Disaggregation & aggregation of time series components: a hybrid forecasting approach using generalized regression neural networks and the theta method,” Neurocomputing, vol. 74, no. 6, pp. 896–905, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. H. B. Celikoglu and H. K. Cigizoglu, “Public transportation trip flow modeling with generalized regression neural networks,” Advances in Engineering Software, vol. 38, no. 2, pp. 71–79, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. R. G. Reynolds, “An introduction to cultural algorithms,” in Proceedings of the 3rd Annual Conference on Evolutionary Programming, pp. 131–139, Singapore, 1994.
  37. Z. Wu and J. Xu, “Predicting and optimization of energy consumption using system dynamics-fuzzy multiple objective programming in world heritage areas,” Energy, vol. 49, no. 1, pp. 19–31, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Kankal, A. Akpinar, M. Kömürcü et al., “Modeling and forecasting of Turkeys energy consumption using socio-economic and demographic variables,” Applied Energy, vol. 88, no. 5, pp. 1927–1939, 2011. View at Google Scholar
  39. Y. S. Lee and L. I. Tong, “Forecasting energy consumption using a grey model improved by incorporating genetic programming,” Energy Conversion and Management, vol. 52, no. 1, pp. 147–152, 2011. View at Publisher · View at Google Scholar · View at Scopus