Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
Volume 2014, Article ID 350682, 11 pages
Research Article

Stabilized Discretization in Spline Element Method for Solution of Two-Dimensional Navier-Stokes Problems

1Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education, Northwestern Polytechnical University, Xi’an 710072, China
2AVIC Shenyang Liming Aeroengine Group Corporation Ltd., Shenyang 110043, China

Received 8 May 2014; Accepted 18 July 2014; Published 27 August 2014

Academic Editor: Xiao-Jun Yang

Copyright © 2014 Neng Wan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


In terms of the poor geometric adaptability of spline element method, a geometric precision spline method, which uses the rational Bezier patches to indicate the solution domain, is proposed for two-dimensional viscous uncompressed Navier-Stokes equation. Besides fewer pending unknowns, higher accuracy, and computation efficiency, it possesses such advantages as accurate representation of isogeometric analysis for object boundary and the unity of geometry and analysis modeling. Meanwhile, the selection of B-spline basis functions and the grid definition is studied and a stable discretization format satisfying inf-sup conditions is proposed. The degree of spline functions approaching the velocity field is one order higher than that approaching pressure field, and these functions are defined on one-time refined grid. The Dirichlet boundary conditions are imposed through the Nitsche variational principle in weak form due to the lack of interpolation properties of the B-splines functions. Finally, the validity of the proposed method is verified with some examples.