Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
Volume 2014, Article ID 453149, 11 pages
http://dx.doi.org/10.1155/2014/453149
Research Article

Generalized Mutual Synchronization between Two Controlled Interdependent Networks

1Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China
2School of Mechanical Engineering and Automation, Xihua University, Chengdu 610039, China

Received 13 January 2014; Accepted 6 February 2014; Published 11 March 2014

Academic Editor: Zhengguang Wu

Copyright © 2014 Quan Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Watts and S. H. Strogatz, “Collective dynamics of 'small-world9 networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. S. H. Strogatz, “Exploring complex networks,” Nature, vol. 410, no. 6825, pp. 268–276, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. M. E. J. Newman, “The structure and function of complex networks,” Society for Industrial and Applied Mathematics, vol. 45, no. 2, pp. 167–256, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, “Complex networks: structure and dynamics,” Physics Reports, vol. 424, no. 4-5, pp. 175–308, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  5. A.-L. Barabási, “Scale-free networks: a decade and beyond,” Science, vol. 325, no. 5939, pp. 412–413, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, “Synchronization in complex networks,” Physics Reports, vol. 469, no. 3, pp. 93–153, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  7. M. Zhao, T. Zhou, B.-H. Wang, and W.-X. Wang, “Enhanced synchronizability by structural perturbations,” Physical Review E, vol. 72, no. 5, Article ID 057102, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Zhao, T. Zhou, B.-H. Wang, G. Yan, H.-J. Yang, and W.-J. Bai, “Relations between average distance, heterogeneity and network synchronizability,” Physica A, vol. 371, no. 2, pp. 773–780, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. X. F. Wang and G. Chen, “Synchronization in scale-free dynamical networks: robustness and fragility,” IEEE Transactions on Circuits and Systems I, vol. 49, no. 1, pp. 54–62, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Liu, X. Liu, G. Chen, and H. Wang, “Robust impulsive synchronization of uncertain dynamical networks,” IEEE Transactions on Circuits and Systems I, vol. 52, no. 7, pp. 1431–1441, 2005. View at Publisher · View at Google Scholar · View at MathSciNet
  11. J.-L. Wang and H.-N. Wu, “Local and global exponential output synchronization of complex delayed dynamical networks,” Nonlinear Dynamics, vol. 67, no. 1, pp. 497–504, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. Y. Shang, M. Chen, and J. Kurths, “Generalized synchronization of complex networks,” Physical Review E, vol. 80, no. 2, Article ID 027201, 4 pages, 2009. View at Google Scholar
  13. X. Wu and H. Lu, “Projective lag synchronization of the general complex dynamical networks with distinct nodes,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 11, pp. 4417–4429, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. M. J. Park, O. M. Kwon, J. H. Park, S. M. Lee, and E. J. Cha, “On synchronization criterion for coupled discrete-time neural networks with interval time-varying delays,” Neurocomputing, vol. 99, pp. 188–196, 2013. View at Google Scholar
  15. N. Mahdavi, M. B. Menhaj, J. Kurths, and J. Lu, “Fuzzy complex dynamical networks and its synchronization,” IEEE Transactions on Cybernetics, vol. 43, no. 2, pp. 648–659, 2013. View at Publisher · View at Google Scholar
  16. Z. Li, G. Feng, and D. Hill, “Controlling complex dynamical networks with coupling delays to a desired orbit,” Physics Letters A, vol. 359, no. 1, pp. 42–46, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  17. X. Li, X. Wang, and G. Chen, “Pinning a complex dynamical network to its equilibrium,” IEEE Transactions on Circuits and Systems I, vol. 51, no. 10, pp. 2074–2087, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  18. J. Lu, D. W. C. Ho, J. Cao, and J. Kurths, “Single impulsive controller for globally exponential synchronization of dynamical networks,” Nonlinear Analysis, Real World Applications, vol. 14, no. 1, pp. 581–593, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  19. C. Li, W. Sun, and J. Kurths, “Synchronization between two coupled complex networks,” Physical Review E, vol. 76, no. 4, Article ID 046204, 6 pages, 2007. View at Google Scholar
  20. A. I. Lerescu, N. Constandache, S. Oancea, and I. Grosu, “Collection of master-slave synchronized chaotic systems,” Chaos, Solitons and Fractals, vol. 22, no. 3, pp. 599–604, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  21. H. Tang, L. Chen, J.-A. Lu, and C. K. Tse, “Adaptive synchronization between two complex networks with nonidentical topological structures,” Physica A, vol. 387, no. 22, pp. 5623–5630, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. X. Wu, W. X. Zheng, and J. Zhou, “Generalized outer synchronization between complex dynamical networks,” Chaos, vol. 19, no. 1, Article ID 013109, 9 pages, 2009. View at Publisher · View at Google Scholar · View at MathSciNet
  23. C. Jian-Rui, J. Li-Cheng, W. Jian-She, and W. Xiao-Hua, “Adaptive synchronization between two different complex networks with time-varying delay coupling,” Chinese Physics Letters, vol. 26, no. 6, Article ID 060505, 4 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. Z. Li and X. Xue, “Outer synchronization of coupled networks using arbitrary coupling strength,” Chaos, vol. 20, no. 2, Article ID 023106, 7 pages, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  25. G. Wang, J. Cao, and J. Lu, “Outer synchronization between two nonidentical networks with circumstance noise,” Physica A, vol. 389, no. 7, pp. 1480–1488, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. Q. Bian and H. Yao, “Generalized synchronization between two complex dynamical networks with time-varying delay and nonlinear coupling,” Mathematical Problems in Engineering, vol. 2011, Article ID 978612, 15 pages, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  27. X. Wu and H. Lu, “Outer synchronization of uncertain general complex delayed networks with adaptive coupling,” Neurocomputing, vol. 82, pp. 157–166, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Zheng, S. Wang, G. Dong, and Q. Bi, “Adaptive synchronization of two nonlinearly coupled complex dynamical networks with delayed coupling,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 1, pp. 284–291, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  29. Y. Wu, C. Li, Y. Wu, and J. Kurths, “Generalized synchronization between two different complex networks,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 1, pp. 349–355, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  30. S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin, “Catastrophic cascade of failures in interdependent networks,” Nature, vol. 464, no. 7291, pp. 1025–1028, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. S.-W. Mei, Y.-Y. Wang, and L.-J. Chen, “Overviews and prospects of the cyber security of smart grid from the view of complex network theory,” High Voltage Engineering, vol. 37, no. 3, pp. 672–679, 2011 (Chinese). View at Google Scholar · View at Scopus
  32. C. D. Brummitt, R. M. D'Souza, and E. A. Leicht, “Suppressing cascades of load in interdependent networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 12, pp. E680–E689, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. S. V. Buldyrev, N. W. Shere, and G. A. Cwilich, “Interdependent networks with identical degrees of mutually dependent nodes,” Physical Review E, vol. 83, no. 1, Article ID 016112, 8 pages, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  34. A. Vespignani, “Complex networks: the fragility of interdependency,” Nature, vol. 464, no. 7291, pp. 984–985, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Dong, J. Gao, R. Du, L. Tian, H. E. Stanley, and S. Havlin, “Robustness of network of networks under targeted attack,” Physical Review E, vol. 87, no. 5, Article ID 052804, 11 pages, 2013. View at Google Scholar
  36. J. Gao, S. V. Buldyrev, H. E. Stanley, and S. Havlin, “Networks formed from interdependent networks,” Nature Physics, vol. 8, no. 1, pp. 40–48, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Shao, S. V. Buldyrev, S. Havlin, and H. E. Stanley, “Cascade of failures in coupled network systems with multiple support-dependence relations,” Physical Review E, vol. 83, no. 3, Article ID 036116, 9 pages, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  38. J. Um, P. Minnhagen, and B. J. Kim, “Synchronization in interdependent networks,” Chaos, vol. 21, no. 2, Article ID 025106, 7 pages, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  39. H. Zhao, Y. Ma, S. Liu, and Y. Yue, “Fuzzy sliding mode variable structure control of chaotic power system with uncertainty,” Journal of Computational Information Systems, vol. 7, no. 6, pp. 1959–1966, 2011. View at Google Scholar · View at Scopus
  40. W. Xiang and J. Xiao, “Finite-time stability and stabilisation for switched linear systems,” International Journal of Systems Science, vol. 44, no. 2, pp. 384–400, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  41. W. Xiang and J. Xiao, “Stability analysis and control synthesis of switched impulsive systems,” International Journal of Robust and Nonlinear Control, vol. 22, no. 13, pp. 1440–1459, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  42. W. Xiang, J. Xiao, and L. Han, “H∞ control synthesis for short-time Markovian jump continuous time linear systems,” Circuits, Systems, and Signal Processing, vol. 32, no. 6, pp. 2799–2820, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  43. W. Xiang, J. Xiao, and M. N. Iqbal, “H∞ control for switched fuzzy systems via dynamic output feedback: hybrid and switched approaches,” Communications in Nonlinear Science and Numerical Simulation, vol. 18, no. 6, pp. 1499–1514, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  44. W. Xiang and J. Xiao, “H∞ control synthesis of switched discrete-time fuzzy systems via hybrid approach, Optimal Control,” Applications and Methods, vol. 34, no. 6, pp. 635–655, 2013. View at Google Scholar