Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
Volume 2014, Article ID 512576, 10 pages
http://dx.doi.org/10.1155/2014/512576
Research Article

Macroscopic Expressions of Molecular Adiabatic Compressibility of Methyl and Ethyl Caprate under High Pressure and High Temperature

1College of Mechanical and Electronic Engineering, Northwest A&F University, No. 22, Xinong Road, Yangling, Xi’an, Shaanxi 712100, China
2Department of Biological Systems Engineering, Washington State University, Room 105 24106 N Bunn Road, Prosser, WA, USA
3Department of Engineering, Faculty of Engineering and Science, University of Agder, 4898 Grimstad, Norway

Received 18 November 2013; Accepted 18 December 2013; Published 16 January 2014

Academic Editor: Ming Liu

Copyright © 2014 Fuxi Shi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Boudy and P. Seers, “Impact of physical properties of biodiesel on the injection process in a common-rail direct injection system,” Energy Conversion and Management, vol. 50, no. 12, pp. 2905–2912, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. A. L. Boehman, D. Morris, J. Szybist, and E. Esen, “The impact of the bulk modulus of diesel fuels on fuel injection timing,” Energy & Fuels, vol. 18, no. 6, pp. 1877–1882, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. M. E. Tat and J. H. van Gerpen, “Measurement of biodiesel sound velocity and its impact on injection timing,” Final Report for National Renewable Energy Laboratory ACG-8-18066-11, 2000. View at Google Scholar
  4. G. Knothe, “‘Designer’ biodiesel: optimizing fatty ester composition to improve fuel properties,” Energy & Fuels, vol. 22, no. 2, pp. 1358–1364, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Knothe, C. A. Sharp, and T. W. Ryan III, “Exhaust emissions of biodiesel, petrodiesel, neat methyl esters, and alkanes in a new technology engine,” Energy & Fuels, vol. 20, no. 1, pp. 403–408, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Payri, F. J. Salvador, J. Gimeno, and G. Bracho, “The effect of temperature and pressure on thermodynamic properties of diesel and biodiesel fuels,” Fuel, vol. 90, no. 3, pp. 1172–1180, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. M. R. Rao, “The adiabatic compressibility of liquids,” The Journal of Chemical Physics, vol. 14, p. 699, 1946. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Wada, “On the relation between compressibility and molal volume of organic liquids,” Journal of the Physical Society of Japan, vol. 4, no. 4-6, pp. 280–283, 1949. View at Google Scholar · View at Scopus
  9. W. Schaaffs, “Schllgeschwindigkeit und Molekülstuktur in Flüssigkeiten,” Zeitschrift für Physikalische Chemie, vol. 196, p. 413, 1951. View at Google Scholar
  10. W. Schaaffs, “Der ultraschall und die struktur der flüssigkeiten,” Il Nuovo Cimento, vol. 7, no. 2, supplement, pp. 286–295, 1950. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Schaaffs, “Die Additivitiätsgesgtze der schllgeschwindigkeit in flüssigkeiten,” Ergebnisse der Exakten Naturwiss, vol. 25, p. 109, 1951. View at Google Scholar
  12. J. L. Daridon, J. A. P. Coutinho, E. H. I. Ndiaye, and M. L. L. Paredes, “Novel data and a group contribution method for the prediction of the sound velocity and isentropic Compressibility of pure fatty acids methyl and ethyl esters,” Fuel, vol. 105, pp. 466–470, 2013. View at Publisher · View at Google Scholar
  13. S. V. D. Freitas, D. L. Cunha, R. A. Reis et al., “Application of wada's group contribution method to the prediction of the sound velocity of biodiesel,” Energy & Fuels, vol. 27, no. 3, pp. 1365–1370, 2013. View at Publisher · View at Google Scholar
  14. S. V. D. Freitas, A. Santos, M. L. C. J. Moita et al., “Measurement and prediction of speeds of sound of fatty acid ethyl esters and ethylic biodiesels,” Fuel, vol. 108, pp. 840–845, 2013. View at Publisher · View at Google Scholar
  15. E. H. I. Ndiaye, D. Nasri, and J. L. Daridon, “Sound velocity, density, and derivative properties of fatty acid methyl and ethyl esters under high pressure: methyl caprate and ethyl caprate,” Journal of Chemical & Engineering Data, vol. 57, no. 10, pp. 2667–2676, 2012. View at Publisher · View at Google Scholar
  16. S. V. D. Freitas, M. L. L. Paredes, J. L. Daridon, A. S. Lima, and J. A. P. Coutinho, “Measurement and prediction of the speed of sound of biodiesel fuels,” Fuel, vol. 103, pp. 1018–1022, 2013. View at Publisher · View at Google Scholar
  17. F. Shi and J. Chen, “Influence of injection temperature on atomization characteristics of biodiesel,” Transactions of the Chinese Society of Agricultural Machinery, vol. 44, no. 7, pp. 33–38, 2013. View at Google Scholar
  18. M. C. Costa, L. A. D. Boros, M. L. S. Batista, J. A. P. Coutinho, M. A. Kraenbuhl, and A. J. A. Meirelles, “Phase diagrams of mixtures of ethyl palmitate with fatty acid ethyl esters,” Fuel, vol. 91, no. 1, pp. 177–181, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. O. C. Didz, Measurement and Modelling Methodology for Heavy Oil and Bitumen Vapour Pressure, University of Calgary, 2012.
  20. D. L. Cunha, J. A. P. Coutinho, R. A. Reis, and M. L. L. Paredes, “An atomic contribution model for the prediction of speed of sound,” Fluid Phase Equilibria, vol. 358, pp. 108–113, 2013. View at Publisher · View at Google Scholar
  21. M. E. Tat, J. H. Van Gerpen, S. Soylu, M. Canakci, A. Monyem, and S. Wormley, “The sound velocity and isentropic bulk modulus of biodiesel at 21°C from atmospheric pressure to 35 MPa,” Journal of the American Oil Chemists' Society, vol. 77, no. 3, pp. 285–289, 2000. View at Google Scholar · View at Scopus
  22. M. E. Tat and J. H. van Gerpen, “Speed of sound and isentropic bulk modulus of alkyl monoesters at elevated temperatures and pressures,” Journal of the American Oil Chemists' Society, vol. 80, no. 12, pp. 1249–1256, 2003. View at Google Scholar · View at Scopus
  23. L. A. Davis and R. B. Gordon, “Compression of mercury at high pressure,” The Journal of Chemical Physics, vol. 46, no. 7, pp. 2650–2660, 1967. View at Google Scholar · View at Scopus
  24. J. L. Daridon, B. Lagourette, and J. P. Grolier, “Experimental measurements of the speed of sound in n-Hexane from 293 to 373 K and up to 150 MPa,” International Journal of Thermophysics, vol. 19, no. 1, pp. 145–160, 1998. View at Google Scholar · View at Scopus
  25. J. E. Lennard-Jones, “On the determination of molecular fields. II.From the equation of state of a gas,” Proceedings of the Royal Society of London A, vol. 106, no. 738, pp. 463–477, 1924. View at Publisher · View at Google Scholar
  26. K. Huang, Statistical Mechanics, John Wiley & Sons, 2nd edition, 1987.
  27. J. R. Elliott Jr., S. J. Suresh, and M. D. Donohue, “A simple equation of state for nonspherical and associating molecules,” Industrial & Engineering Chemistry Research, vol. 29, no. 7, pp. 1476–1485, 1990. View at Google Scholar · View at Scopus
  28. J. H. Park and H. K. Kim, “Dual-microphone voice activity detection incorporating gaussian mixture models with an error correction scheme in non-stationary noise environments,” International Journal of Innovative Computing, Information and Control, vol. 9, no. 6, pp. 2533–2542, 2013. View at Google Scholar