Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
Volume 2014, Article ID 514295, 8 pages
http://dx.doi.org/10.1155/2014/514295
Research Article

Research and Application of Personalized Modeling Based on Individual Interest in Mining

School of Management, Harbin Institute of Technology, Harbin 150001, China

Received 25 May 2014; Accepted 12 July 2014; Published 5 August 2014

Academic Editor: Josep M. Rossell

Copyright © 2014 Baocheng Huang and Guang Yu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. U. Song, X. Li, and B. Shuo, “Wang improved real word document weight calculation method,” Chinese Information Technology, vol. 14, no. 6, pp. 8–13, 2002. View at Google Scholar
  2. C.-F. Zhang, Based on the behavior of users interested in the study, Beijing University of Posts and Telecommunications, 2008.
  3. P. Ralph and J. Parsons, “A framework for automatic online personalization,” in Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS '06), pp. 137–146, Big Island, Hawaii, USA, January 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Mladenic and M. Grobelnik, “Feature selection for unbalanced class distribution and Naïve Bayes,” in Proceedings of the 6th International Conference on Machine Learning (ICML '99), pp. 258–267, 1999.
  5. Y. Yang and J. P. Pedersen, “A comparative study on feature selection in text categorization,” in Proceedings of the 14th International Conference on Machine Learning (ICML '97), pp. 412–420, Nashville, Tenn, USA, 1997.
  6. L. Gang, F. Z. Hua, W. Yong, and Z. Yong, “An application of neural networks in text classification,” Computer Engineering and Applications, vol. 39, no. 36, pp. 73–75, 2003. View at Google Scholar
  7. T. Joachims, Making Large Scale SVM Learning Practical, MIT Press, Cambridge, Mass, USA, 2008.
  8. J. Platt, “Fast training of SVMs using sequential minimal optimization,” in Advances in Kernek Methods-Support Vector Learning, B. Schllopf, C. J. C. Burges, and A. J. Smola, Eds., pp. 85–208, MIT Press, Cambridge, Mass, USA, 1998. View at Google Scholar
  9. D. D. Lewis, “Evaluating and optimizing autonomous text classification systems,” in Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 246–254, Seattle, Wash, USA, July 1995. View at Scopus
  10. Z. Jingbo and T.-S. Yao, “FIFA text-based classification algorithm,” Microcomputer Applications, vol. 23, no. 1, pp. 18–20, 2002. View at Google Scholar
  11. S. Yin, H. Luo, and S. Ding, “Real-time implementation of fault-tolerant control systems with performance optimization,” IEEE Transactions on Industrial Electronics, vol. 64, no. 5, pp. 2402–2411, 2014. View at Google Scholar
  12. S. Yin, G. Wang, and H. Karimi, “Data-driven design of robust fault detection system for wind turbines,” Mechatronics, vol. 24, no. 4, pp. 298–306, 2014. View at Publisher · View at Google Scholar
  13. S. Yin, S. X. Ding, A. H. A. Sari, and H. Hao, “Data-driven monitoring for stochastic systems and its application on batch process,” International Journal of Systems Science, vol. 44, no. 7, pp. 1366–1376, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  14. S. Yin, S. X. Ding, A. Haghani, H. Hao, and P. Zhang, “A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process,” Journal of Process Control, vol. 22, no. 9, pp. 1567–1581, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Yin, X. Yang, and H. R. Karimi, “Data-driven adaptive observer for fault diagnosis,” Mathematical Problems in Engineering, vol. 2012, Article ID 832836, 21 pages, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  16. K. Yoshii, M. Goto, K. Komatani, T. Ogata, and H. G. Okuno, “An efficient hybrid music recommender system using an incrementally trainable probabilistic generative model,” IEEE Transactions on Audio, Speech and Language Processing, vol. 16, no. 2, pp. 435–447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. I. B. Crabtree and S. J. Soltysiak, “Identifying and tracking changing interests,” International Journal on Digital Libraries, vol. 2, no. 1, pp. 38–53, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Koychev and I. Schwab, “Adaptation to drifting users interests,” in Proceedings of the ECML 2000 Workshop: Machine Learning in New Information Age, pp. 39–45, Barcelona, Spain, 2010.
  19. M. A. Maloof and R. S. Michalski, “Selecting examples for partial memory learning,” Machine Learning, vol. 41, no. 1, pp. 27–52, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Xiao, Q. Hu, and Y. Zhang, “Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation,” IEEE Transactions on Control Systems Technology, vol. 20, no. 6, pp. 1605–1612, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Xiao, Q.-L. Hu, and G. Ma, “Adaptive sliding mode backstepping control for attitude tracking of flexible spacecraft under input saturation and singularity,” Proceedings of the Institution of Mechanical Engineers. Part G. Journal of Aerospace Engineering, vol. 224, no. 2, pp. 199–214, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. X. Zhao, X. Liu, S. Yin, and H. Li, “Improved results on stability of continuous-time switched positive linear systems,” Automatica, vol. 50, no. 2, pp. 614–621, 2014. View at Publisher · View at Google Scholar · View at MathSciNet
  23. S. Yin, G. Wang, and X. Yang, “Robust PLS approach for KPI-related prediction and diagnosis against outliers and missing data,” International Journal of Systems Science, vol. 45, no. 7, pp. 1375–1382, 2014. View at Publisher · View at Google Scholar · View at MathSciNet
  24. S. Yin, G. Wang, and H. R. Karimi, “Data-driven design of robust fault detection system for wind turbines,” Mechatronics, vol. 24, pp. 298–306, 2014. View at Google Scholar
  25. S. Yin, X. Li, H. Gao, and O. Kaynak, “Data-based techniques focused on modern industry: an overview,” IEEE Transactions on Industrial Electronics, 2014. View at Publisher · View at Google Scholar
  26. L. H. Ungar and D. P. Foster, “Clustering methods for collaborative filter,” in Proceedings of the Workshop on Recommender Systems, Technical Report WS-98-08, pp. 84–88, Menlo Park, Calif, USA, 1998.
  27. M. Balabanović and Y. Shoham, “Content-based, collaborative recommendation,” Communications of the ACM, vol. 40, no. 3, pp. 66–72, 1997. View at Google Scholar · View at Scopus
  28. R. Girardi and L. Balby Marinho, “A domain model of Web recommender systems based on usage mining and collaborative filtering,” Requirements Engineering, vol. 12, no. 1, pp. 23–40, 2007. View at Publisher · View at Google Scholar · View at Scopus