Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
Volume 2014, Article ID 548126, 5 pages
http://dx.doi.org/10.1155/2014/548126
Research Article

Similarity Solution for Fractional Diffusion Equation

1School of Sciences, Shanghai Institute of Technology, Shanghai 201418, China
2School of Mathematics, Baotou Teachers College, Baotou, Inner Mongolia 014030, China

Received 4 January 2014; Accepted 11 February 2014; Published 12 March 2014

Academic Editor: Ming Li

Copyright © 2014 Jun-Sheng Duan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, New York, NY, USA, 1982. View at MathSciNet
  2. S. Havlin and D. Ben-Avraham, “Diffusion in disordered media,” Advances in Physics, vol. 51, no. 1, pp. 187–292, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Liu, H. Li, F. Chang, and L. Lin, “Anomalous diffusion on the percolating networks,” Fractals, vol. 6, no. 2, pp. 139–144, 1998. View at Google Scholar · View at Scopus
  4. F.-Y. Ren, J.-R. Liang, and X.-T. Wang, “The determination of the diffusion kernel on fractals and fractional diffusion equation for transport phenomena in random media,” Physics Letters A, vol. 252, no. 3-4, pp. 141–150, 1999. View at Google Scholar · View at Scopus
  5. Q. Zeng and H. Li, “Diffusion equation for disordered fractal media,” Fractals, vol. 8, no. 1, pp. 117–121, 2000. View at Google Scholar · View at Scopus
  6. C. Cattani, “Fractals and hidden symmetries in DNA,” Mathematical Problems in Engineering, vol. 2010, Article ID 507056, 31 pages, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  7. M. Li and W. Zhao, “On bandlimitedness and lag-limitedness of fractional Gaussian noise,” Physica A, vol. 392, no. 9, pp. 1955–1961, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  8. M. Li, “A class of negatively fractal dimensional Gaussian random functions,” Mathematical Problems in Engineering, vol. 2011, Article ID 291028, 18 pages, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  9. M. Li, C. Cattani, and S.-Y. Chen, “Viewing sea level by a one-dimensional random function with long memory,” Mathematical Problems in Engineering, vol. 2011, Article ID 654284, 13 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Cattani and G. Pierro, “On the fractal geometry of DNA by the binary image analysis,” Bulletin of Mathematical Biology, vol. 75, no. 9, pp. 1544–1570, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. R. Metzler and J. Klafter, “The random walk's guide to anomalous diffusion: a fractional dynamics approach,” Physics Reports, vol. 339, no. 1, pp. 1–77, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  12. M. Giona and H. E. Roman, “Fractional diffusion equation for transport phenomena in random media,” Physica A, vol. 185, no. 1–4, pp. 87–97, 1992. View at Google Scholar · View at Scopus
  13. R. Metzler, W. G. Glöckle, and T. F. Nonnenmacher, “Fractional model equation for anomalous diffusion,” Physica A, vol. 211, no. 1, pp. 13–24, 1994. View at Google Scholar · View at Scopus
  14. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach, Amsterdam, The Netherlands, 1993. View at MathSciNet
  15. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, Calif, USA, 1999. View at MathSciNet
  16. K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, NY, USA, 1974. View at MathSciNet
  17. D. Băleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, World Scientific, Boston, Mass, USA, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  18. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, NY, USA, 1993. View at MathSciNet
  19. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, The Netherlands, 2006. View at MathSciNet
  20. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, UK, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  21. M. Y. Xu and W. C. Tan, “Theoretical analysis of the velocity field, stress field and vortex sheet of generalized second order fluid with fractional anomalous diffusion,” Science in China A, vol. 44, no. 11, pp. 1387–1399, 2001. View at Google Scholar · View at Scopus
  22. C. P. Li, W. H. Deng, and D. Xu, “Chaos synchronization of the Chua system with a fractional order,” Physica A, vol. 360, no. 2, pp. 171–185, 2006. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  23. J.-S. Duan, “Time- and space-fractional partial differential equations,” Journal of Mathematical Physics, vol. 46, no. 1, Article ID 013504, pp. 13504–13511, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  24. J.-S. Duan, “The periodic solution of fractional oscillation equation with periodic input,” Advances in Mathematical Physics, vol. 2013, Article ID 869484, 6 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  25. J. S. Duan, R. Rach, D. Baleanu, and A. M. Wazwaz, “A review of the Adomian decomposition method and its applications to fractional differential equations,” Communications in Fractional Calculus, vol. 3, no. 2, pp. 73–99, 2012. View at Google Scholar
  26. F. Liu, P. Zhuang, V. Anh, I. Turner, and K. Burrage, “Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation,” Applied Mathematics and Computation, vol. 191, no. 1, pp. 12–20, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  27. Z. H. Wang and X. Wang, “General solution of the Bagley-Torvik equation with fractional-order derivative,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 5, pp. 1279–1285, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  28. A. M. Yang, C. Cattani, H. Jafari, and X. J. Yang, “Analytical solutions of the onedimensional heat equations arising in fractal transient conduction with local fractional derivative,” Abstract and Applied Analysis, vol. 2013, Article ID 462535, 5 pages, 2013. View at Publisher · View at Google Scholar
  29. G. W. Bluman and S. C. Anco, Symmetry and Integration Methods for Differential Equations, Springer, New York, NY, USA, 2002. View at MathSciNet
  30. R. Gorenflo, Y. Luchko, and F. Mainardi, “Wright functions as scale-invariant solutions of the diffusion-wave equation,” Journal of Computational and Applied Mathematics, vol. 118, no. 1-2, pp. 175–191, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  31. W. Wyss, “The fractional diffusion equation,” Journal of Mathematical Physics, vol. 27, no. 11, pp. 2782–2785, 1986. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  32. E. Buckwar and Y. Luchko, “Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations,” Journal of Mathematical Analysis and Applications, vol. 227, no. 1, pp. 81–97, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  33. B. Davies, Integral Transforms and Their Applications, Springer, New York, NY, USA, 3rd edition, 2002. View at Publisher · View at Google Scholar · View at MathSciNet
  34. A. M. Mathai and R. K. Saxena, The H-Function with Applications in Statistics and Other Disciplines, John Wiley & Sons, New Delhi, India, 1978. View at MathSciNet
  35. H. M. Srivastava, K. C. Gupta, and S. P. Goyal, The H-Functions of One and Two Variables with Applications, South Asian, New Delhi, India, 1982. View at MathSciNet