Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
Volume 2014, Article ID 623605, 9 pages
http://dx.doi.org/10.1155/2014/623605
Research Article

Adaptive Output Feedback Stabilization of Nonholonomic Systems with Nonlinear Parameterization

1School of Software, Anyang Normal University, Anyang 455000, China
2School of Mathematics and Statistics, Anyang Normal University, Anyang 455000, China
3School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009, China

Received 18 April 2014; Accepted 24 July 2014; Published 12 August 2014

Academic Editor: Janusz Brzdek

Copyright © 2014 Yanling Shang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. M. Murray and S. S. Sastry, “Nonholonomic motion planning: steering using sinusoids,” IEEE Transactions on Automatic Control, vol. 38, no. 5, pp. 700–716, 1993. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  2. R. W. Brockett, “Asymptotic stability and feedback stabilization,” in Differ. Geom. Control Theory, R. W. Brockett, R. S. Millman, and H. J. Sussmann, Eds., pp. 2961–2963, 1983. View at Google Scholar
  3. I. Kolmanovsky and N. H. McClamroch, “Developments in nonholonomic control problems,” IEEE Control Systems Magazine, vol. 15, no. 6, pp. 20–36, 1995. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Astolfi, “Discontinuous control of nonholonomic systems,” Systems & Control Letters, vol. 27, no. 1, pp. 37–45, 1996. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  5. Z. Jiang, “Iterative design of time-varying stabilizers for multi-input systems in chained form,” Systems & Control Letters, vol. 28, no. 5, pp. 255–262, 1996. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  6. W. L. Xu and W. Huo, “Variable structure exponential stabilization of chained systems based on the extended nonholonomic integrator,” Systems & Control Letters, vol. 41, no. 4, pp. 225–235, 2000. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  7. Z. Sun, S. S. Ge, W. Huo, and T. H. Lee, “Stabilization of nonholonomic chained systems via nonregular feedback linearization,” Systems & Control Letters, vol. 44, no. 4, pp. 279–289, 2001. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  8. Y. Tian and S. Li, “Exponential stabilization of nonholonomic dynamic systems by smooth time-varying control,” Automatica, vol. 38, no. 7, pp. 1139–1146, 2002. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  9. Z. Jiang, “Robust exponential regulation of nonholonomic systems with uncertainties,” Automatica, vol. 36, no. 2, pp. 189–209, 2000. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  10. Z. Xi, G. Feng, Z. P. Jiang, and D. Cheng, “A switching algorithm for global exponential stabilization of uncertain chained systems,” IEEE Transactions on Automatic Control, vol. 48, no. 10, pp. 1793–1798, 2003. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  11. Z. R. Xi, G. Feng, Z. P. Jiang, and D. Z. Cheng, “Output feedback exponential stabilization of uncertain chained systems,” Journal of the Franklin Institute, vol. 344, no. 1, pp. 36–57, 2007. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  12. K. D. Do and J. Pan, “Adaptive global stabilization of nonholonomic systems with strong nonlinear drifts,” Systems & Control Letters, vol. 46, no. 3, pp. 195–205, 2002. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  13. S. S. Ge, Z. P. Wang, and T. H. Lee, “Adaptive stabilization of uncertain nonholonomic systems by state and output feedback,” Automatica. A Journal of IFAC, The International Federation of Automatic Control, vol. 39, no. 8, pp. 1451–1460, 2003. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  14. Y. Hu, S. S. Ge, and C. Su, “Stabilization of uncertain nonholonomic systems via time-varying sliding mode control,” IEEE Transactions on Automatic Control, vol. 49, no. 5, pp. 757–763, 2004. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  15. Y. Q. Wu, Y. Zhao, and J. B. Yu, “Global asymptotic stability controller of uncertain nonholonomic systems,” Journal of the Franklin Institute. Engineering and Applied Mathematics, vol. 350, no. 5, pp. 1248–1263, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  16. Y. G. Liu and J. F. Zhang, “Output-feedback adaptive stabilization control design for non-holonomic systems with strong non-linear drifts,” International Journal of Control, vol. 78, no. 7, pp. 474–490, 2005. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  17. X. Y. Zheng and Y. Q. Wu, “Adaptive output feedback stabilization for nonholonomic systems with strong nonlinear drifts,” Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods, vol. 70, no. 2, pp. 904–920, 2009. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  18. Y. Wu, G. Ju, and X. Zheng, “Adaptive output feedback control for nonholonomic systems with uncertain chained form,” International Journal of Systems Science, vol. 41, no. 12, pp. 1537–1547, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  19. G. L. Ju, Y. Q. Wu, and W. H. Sun, “Output-feedback control for nonholonomic systems with linear growth condition,” Journal of Systems Science & Complexity, vol. 24, no. 5, pp. 862–874, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  20. Y. Zhao and Y. Q. Wu, “Control of nonholonomic systems with nonlinear unmeasured dynamics by output feedback,” Journal of Control Theory and Applications, vol. 11, no. 3, pp. 504–512, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  21. F. Z. Gao, F. S. Yuan, and H. J. Yao, “Robust adaptive control for nonholonomic systems with nonlinear parameterization,” Nonlinear Analysis: Real World Applications, vol. 11, no. 4, pp. 3242–3250, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  22. F. Z. Gao, F. S. Yuan, H. J. Yao, and X. W. Mu, “Adaptive stabilization of high order nonholonomic systems with strong nonlinear drifts,” Applied Mathematical Modelling. Simulation and Computation for Engineering and Environmental Systems, vol. 35, no. 9, pp. 4222–4233, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  23. F. Z. Gao, Y. L. Shang, and F. S. Yuan, “Robust adaptive finite-time stabilization of nonlinearly parameterized nonholonomic systems,” Acta Applicandae Mathematicae, vol. 123, no. 1, pp. 157–173, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  24. W. Lin and C. Qian, “Adaptive control of nonlinearly parameterized systems: a nonsmooth feedback framework,” IEEE Transactions on Automatic Control, vol. 47, no. 5, pp. 757–774, 2002. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  25. E. G. Sontag, “Smooth stabilization implies coprime factorization,” IEEE Transactions on Automatic Control, vol. 34, no. 4, pp. 435–443, 1989. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  26. H. K. Khalil, Nonlinear Systems, Prentice-Hall, Upper Saddle River, NJ, USA, 3rd edition, 2002.