Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
Volume 2014, Article ID 640194, 9 pages
http://dx.doi.org/10.1155/2014/640194
Research Article

A Compact-Type CIP Method for General Korteweg-de Vries Equation

1School of Electric Power Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
2School of Mathematical Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
3Department of Mathematics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China

Received 26 April 2014; Revised 13 July 2014; Accepted 15 July 2014; Published 3 August 2014

Academic Editor: Yushun Wang

Copyright © 2014 YuFeng Shi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Korteweg and G. de Vries, “XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves,” Philosophical Magazine Series 5, vol. 39, no. 240, pp. 422–443, 1895. View at Publisher · View at Google Scholar
  2. N. J. Zabusky and M. D. Kruskal, “Interaction of “solitons” in a collisionless plasma and the recurrence of initial states,” Physical Review Letters, vol. 15, no. 6, pp. 240–243, 1965. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Yan and C.-W. Shu, “A local discontinuous Galerkin method for KdV type equations,” SIAM Journal on Numerical Analysis, vol. 40, no. 2, pp. 769–791, 2002. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  4. M. A. Helal and M. S. Mehanna, “A comparison between two different methods for solving KdV-Burgers equation,” Chaos, Solitons and Fractals, vol. 28, no. 2, pp. 320–326, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  5. T. Geyikli and D. Kaya, “Comparison of the solutions obtained by B-spline FEM and ADM of KdV equation,” Applied Mathematics and Computation, vol. 169, no. 1, pp. 146–156, 2005. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  6. Z.-Q. Lv, M. Xue, and Y.-S. Wang, “A new multi-symplectic scheme for the KdV equation,” Chinese Physics Letters, vol. 28, no. 6, Article ID 060205, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. H.-P. Wang, Y.-S. Wang, and Y.-Y. Hu, “An explicit scheme for the KdV equation,” Chinese Physics Letters, vol. 25, no. 7, pp. 2335–2338, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. P. F. Zhao and M. Z. Qin, “Multisymplectic geometry and multisymplectic preissmann scheme for the KdV equation,” Journal of Physics A: Mathematical and General, vol. 33, no. 18, pp. 3613–3626, 2000. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  9. U. M. Ascher and R. I. McLachlan, “Multisymplectic box schemes and the Korteweg-de Vries equation,” Applied Numerical Mathematics, vol. 48, no. 3-4, pp. 255–269, 2004. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  10. Y. Wang, B. Wang, and M. Qin, “Numerical implementation of the multisymplectic Preissman scheme and its equivalent schemes,” Applied Mathematics and Computation, vol. 149, no. 2, pp. 299–326, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  11. Y. Wang, B. Wang, and X. Chen, “Multisymplectic Euler box scheme for the KdV equation,” Chinese Physics Letters, vol. 24, no. 2, article 312, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. E. N. Aksan and A. Özdeş, “Numerical solution of Korteweg-de Vries equation by Galerkin B-spline finite element method,” Applied Mathematics and Computation, vol. 175, no. 2, pp. 1256–1265, 2006. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  13. I. Dağ and Y. Dereli, “Numerical solutions of KdV equation using radial basis functions,” Applied Mathematical Modelling, vol. 32, no. 4, pp. 535–546, 2008. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  14. M. Dehghan and A. Shokri, “A numerical method for KdV equation using collocation and radial basis functions,” Nonlinear Dynamics. An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems, vol. 50, no. 1-2, pp. 111–120, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  15. S.-Y. Hao, S.-S. Xie, and S.-C. Yi, “The Galerkin method for the KdV equation using a new basis of smooth piecewise cubic polynomials,” Applied Mathematics and Computation, vol. 218, no. 17, pp. 8659–8671, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  16. G. Lin, L. Grinberg, and G. E. Karniadakis, “Numerical studies of the stochastic Korteweg-de Vries equation,” Journal of Computational Physics, vol. 213, no. 2, pp. 676–703, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  17. R.-X. Liu and L.-L. Wu, “Small-stencil Padé schemes to solve nonlinear evolution equations,” Applied Mathematics and Mechanics, vol. 26, no. 7, pp. 872–881, 2005. View at Publisher · View at Google Scholar · View at MathSciNet
  18. R.-G. Yu, R.-H. Wang, and C.-G. Zhu, “A numerical method for solving KdV equation with multilevel B-spline quasi-interpolation,” Applicable Analysis, vol. 92, no. 8, pp. 1682–1690, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  19. H. Takewaki, A. Nishiguchi, and T. Yabe, “Cubic interpolated pseudoparticle method (CIP) for solving hyperbolic-type equations,” Journal of Computational Physics, vol. 61, no. 2, pp. 261–268, 1985. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  20. H. Takewaki and T. Yabe, “The cubic-interpolated pseudo particle (CIP) method: application to nonlinear and multi-dimensional hyperbolic equations,” Journal of Computational Physics, vol. 70, no. 2, pp. 355–372, 1987. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  21. T. Yabe and T. Aoki, “A universal solver for hyperbolic equations by cubic-polynomial interpolation. I. One-dimensional solver,” Computer Physics Communications, vol. 66, no. 2-3, pp. 219–232, 1991. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  22. T. Ishikawa, T. Yabe, P. Y. Wang, T. Aoki, and F. Ikeda, “A universal solver for hyperbolicequations by cubic-polynomial interpolation. 2. 2-dimensional and 3-dimensional solvers,” Computer Physics Communications, vol. 66, no. 2-3, pp. 233–242, 1991. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  23. S. K. Lele, “Compact finite difference schemes with spectral-like resolution,” Journal of Computational Physics, vol. 103, no. 1, pp. 16–42, 1992. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  24. J. Li and M. R. Visbal, “High-order compact schemes for nonlinear dispersive waves,” Journal of Scientific Computing, vol. 26, no. 1, pp. 1–23, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  25. M. M. Hassan, “Exact solitary wave solutions for a generalized KdV-Burgers equation,” Chaos, Solitons and Fractals, vol. 19, no. 5, pp. 1201–1206, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  26. T. Yabe, R. Tanaka, T. Nakamura, and F. Xiao, “An exactly conservative semi-lagrangian scheme (CIP-CSL) in one dimension,” Monthly Weather Review, vol. 129, no. 2, pp. 332–344, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. D. V. Gaitonde and M. R. Visbal, “High-order schemes for navier-stokes equations: algorithm and implementation into fdl3di,” Tech. Rep., DTIC Document, 1998. View at Google Scholar
  28. R. M. Miura, C. S. Gardner, and M. D. Kruskal, “Korteweg-de Vries equation and generalizations: II. Existence of conservation laws and constants of motion,” Journal of Mathematical Physics, vol. 9, pp. 1204–1209, 1968. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  29. M. A. Helal and M. S. Mehanna, “A comparative study between two different methods for solving the general Korteweg-de Vries equation (GKdV),” Chaos, Solitons and Fractals, vol. 33, no. 3, pp. 725–739, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  30. H. N. A. Ismail, K. R. Raslan, and G. S. E. Salem, “Solitary wave solutions for the general KDV equation by Adomian decomposition method,” Applied Mathematics and Computation, vol. 154, no. 1, pp. 17–29, 2004. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus