Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
Volume 2014, Article ID 690801, 7 pages
http://dx.doi.org/10.1155/2014/690801
Research Article

Asymptotic Limit to Shocks for Scalar Balance Laws Using Relative Entropy

Department of Mathematics, Dong-A University, Busan 604-714, Republic of Korea

Received 22 April 2014; Accepted 4 July 2014; Published 16 July 2014

Academic Editor: Milan Pokorny

Copyright © 2014 Young-Sam Kwon. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Leger, “L2 stability estimates for shock solutions of scalar conservation laws using the relative entropy method,” Archive for Rational Mechanics and Analysis, vol. 199, no. 3, pp. 761–778, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  2. N. Leger and A. Vasseur, “Relative entropy and the stability of shocks and contact discontinuities for systems of conservation laws with non-BV perturbations,” Archive for Rational Mechanics and Analysis, vol. 201, no. 1, pp. 271–302, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  3. C. M. Dafermos, “Entropy and the stability of classical solutions of hyperbolic systems of conservation laws,” in Recent Mathematical Methods in Nonlinear Wave Propagation (Montecatini Terme, 1994), vol. 1640 of Lecture Notes in Mathematics, pp. 48–69, Springer, Berlin, Germany, 1996. View at Publisher · View at Google Scholar · View at MathSciNet
  4. C. M. Dafermos, “The second law of thermodynamics and stability,” Archive for Rational Mechanics and Analysis, vol. 70, no. 2, pp. 167–179, 1979. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  5. R. J. DiPerna, “Uniqueness of solutions to hyperbolic conservation laws,” Indiana University Mathematics Journal, vol. 28, no. 1, pp. 137–188, 1979. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. G. Chen, H. Frid, and Y. Li, “Uniqueness and stability of Riemann solutions with large oscillation in gas dynamics,” Communications in Mathematical Physics, vol. 228, no. 2, pp. 201–217, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  7. C. Bardos, F. Golse, and C. D. Levermore, “Fluid dynamic limits of kinetic equations. II. Convergence proofs for the Boltzmann equation,” Communications on Pure and Applied Mathematics, vol. 46, no. 5, pp. 667–753, 1993. View at Publisher · View at Google Scholar · View at MathSciNet
  8. C. Bardos, F. Golse, and D. Levermore, “Fluid dynamic limits of kinetic equations. I. Formal derivations,” Journal of Statistical Physics, vol. 63, no. 1-2, pp. 323–344, 1991. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  9. P. L. Lions and N. Masmoudi, “From the Boltzmann equations to the equations of incompressible fluid mechanics. I, II,” Archive for Rational Mechanics and Analysis, vol. 158, no. 3, pp. 173–211, 2001. View at Publisher · View at Google Scholar · View at MathSciNet
  10. F. Golse and L. Saint-Raymond, “The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels,” Inventiones Mathematicae, vol. 155, no. 1, pp. 81–161, 2004. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  11. N. Masmoudi and L. Saint-Raymond, “From the Boltzmann equation to the Stokes-Fourier system in a bounded domain,” Communications on Pure and Applied Mathematics, vol. 56, no. 9, pp. 1263–1293, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  12. L. Saint-Raymond, “Convergence of solutions to the Boltzmann equation in the incompressible Euler limit,” Archive for Rational Mechanics and Analysis, vol. 166, no. 1, pp. 47–80, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  13. L. Saint-Raymond, “From the BGK model to the Navier-Stokes equations,” Annales Scientifiques de l'École Normale Supérieure, vol. 36, no. 2, pp. 271–317, 2003. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  14. P. Germain, “Weak-strong uniqueness for the isentropic compressible Navier-Stokes system,” Journal of Mathematical Fluid Mechanics, vol. 13, no. 1, pp. 137–146, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  15. E. Feireisl and A. Novotný, “Weak-strong uniqueness property for the full Navier-Stokes-Fourier system,” Archive for Rational Mechanics and Analysis, vol. 204, no. 2, pp. 683–706, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  16. C. Lattanzio and A. E. Tzavaras, “Relative entropy in diffusive relaxation,” SIAM Journal on Mathematical Analysis, vol. 45, no. 3, pp. 1563–1584, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  17. A. E. Tzavaras, “Relative entropy in hyperbolic relaxation,” Communications in Mathematical Sciences, vol. 3, no. 2, pp. 119–132, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. F. Berthelin, A. E. Tzavaras, and A. Vasseur, “From discrete velocity Boltzmann equations to gas dynamics before shocks,” Journal of Statistical Physics, vol. 135, no. 1, pp. 153–173, 2009. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  19. F. Berthelin and A. Vasseur, “From kinetic equations to multidimensional isentropic gas dynamics before shocks,” SIAM Journal on Mathematical Analysis, vol. 36, no. 6, pp. 1807–1835, 2005. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  20. G. Choi and A. Vasseur, “Relative entropy applied to the stability of viscous shocks up to a translation for scalar conservation laws,” http://arxiv.org/abs/1210.7853.
  21. Y.-S. Kwon and A. Vasseur, “Asymptotic limit to a shock for BGK models using relative entropy method,” Preprint.