Abstract and Applied Analysis
Volume 2014 (2014), Article ID 750851, 7 pages
http://dx.doi.org/10.1155/2014/750851
Research Article
Predictive Function Optimization Control for a Class of Hydraulic Servo Vibration Systems
1School of Electrical and Information Engineering, Anhui University of Technology, Ma’anshan 243002, China
2School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
Received 29 January 2014; Accepted 17 March 2014; Published 23 April 2014
Academic Editor: Hao Shen
Copyright © 2014 Xugang Feng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Linked References
- Y. Xue, N. Lu, and X. Lin, “Advances on construction vibratory mechanism,” Chinese Journal of Construction Machinery, vol. 306, no. 2, pp. 237–242, 2008. View at Google Scholar
- Y. Wang, X. Zhao, L. Xu, and X. Hou, “Progress of vibration technology application in agricultural production,” Journal of China Agricultural University, vol. 18, no. 6, pp. 231–236, 2013. View at Google Scholar
- Y. Zhang, Y. Kuang, and Y. Chen, “Design of hydraulic vibration potato harvester mining device,” Southwest China Journal of Agricultural Sciences, vol. 26, no. 02, pp. 783–788, 2013. View at Google Scholar
- J. Li, Y. Fang, and S. Shi, “Robust output-feedback control for hydraulic servo-position system of cold-strip rolling mill,” Control Theory and Applications, vol. 29, no. 3, pp. 331–336, 2012. View at Google Scholar · View at Scopus
- J. Li, Y. Fang, and S. Shi, “Robust dynamic output-feedback control of hydraulic servo system with input saturation for rolling mill,” Control and Decision, vol. 28, no. 2, pp. 211–217, 2013. View at Google Scholar
- Y. Xi and D. Li, “Model predictive control—status and challenges,” Acta Automatica Sinica, vol. 39, no. 3, pp. 222–236, 2013. View at Google Scholar
- D. He, B. Ding, and S. Yu, “Review of fundamental propertirs and topics of model predictive control for nonlinear systems,” Control Theory and Applications, vol. 30, no. 3, pp. 274–287, 2013. View at Google Scholar
- G. Sun and W. Huo, “Direct-adaptive fuzzy predictive control of satellite attitude,” Acta Automatica Sinica, vol. 36, no. 8, pp. 1151–1159, 2010. View at Publisher · View at Google Scholar · View at Scopus
- J. Richalet, “Model predictive heuristic control: application to industrial processes,” Automatica, vol. 15, no. 5, pp. 413–428, 2010. View at Google Scholar
- J. Miao, H. Li, G. Hu, and R. Zhao, “Maximum ratio of torque to current of induction motor based on predictive functional control,” Control and Decision, vol. 25, no. 2, pp. 218–222, 2010. View at Google Scholar · View at Scopus
- W. Dai and X. Wang, “Self-tuning fuzzy predictive functional control strategy for cascade time-delay system,” CIESC Journal, vol. 61, no. 8, pp. 2132–2137, 2010. View at Google Scholar · View at Scopus
- M. Xu, S. Li, and C. Pan, “Predictive functional control based on kautz model with optimum compensating method,” Proceedings of the Chinese Society of Electrical Engineering, vol. 20, no. 2, pp. 101–106, 2009. View at Google Scholar
- H. Shen, J. H. Park, L. Zhang, and Z. Wu, “Robust extended dissipative control for sampled-data Markov jump systems,” International Journal of Control, 2013. View at Publisher · View at Google Scholar
- S. He and F. Liu, “Adaptive observer-based fault estimation for stochastic Markovian jumping systems,” Abstract and Applied Analysis, vol. 2012, Article ID 176419, 11 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
- Z. Wu, P. Shi, H. Su, and J. Chu, “Asynchronous l2-l∞ filtering for discrete-time stochastic Markov jump systems with randomly occurred sensor nonlinearities,” Automatica, vol. 50, no. 1, pp. 180–186, 2014. View at Publisher · View at Google Scholar
- H. Shen, S. Xu, J. Lu, and J. Zhou, “Passivity-based control for uncertain stochastic jumping systems with mode-dependent round-trip time delays,” Journal of the Franklin Institute, vol. 349, no. 5, pp. 1665–1680, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
- Z. Xia and G. Zhang, “Design and evaluation of predictive functional control for a servo system,” Proceedings of the Csee, vol. 25, no. 14, pp. 130–134, 2005. View at Google Scholar
- I. Škrjanc and D. Matko, “Predictive functional control based on fuzzy model for heat-exchanger pilot plant,” IEEE Transactions on Fuzzy Systems, vol. 8, no. 6, pp. 705–712, 2000. View at Publisher · View at Google Scholar · View at Scopus
- M. A. Brdys, M. Grochowski, T. Gminski, K. Konarczak, and M. Drewa, “Hierarchical predictive control of integrated wastewater treatment systems,” Control Engineering Practice, vol. 16, no. 6, pp. 751–767, 2008. View at Publisher · View at Google Scholar · View at Scopus
- Y. Xue, N. Lu, and X. Lin, “Progress of application and research on mechanical vibrtion technology in engineering,” Chinese Journal of Rock Mechanics and Engineering, vol. 306, no. 2, pp. 237–242, 2008. View at Google Scholar
- C. Li, R. Liang, and Z. Kan, “The application of hydraulic vibration system on tomato fruit separation device,” Journal of Agricultural Mechanization Research, vol. 12, pp. 223–236, 2013. View at Google Scholar
- L. Qiang, Study on the System of the Thin Slab Continuous Casting Mold Driven by Hydraulic, Yanshan University, 2010.
- S. Wang, Process Control Engineering, Chemical industry Press, 2008.