Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
Volume 2014, Article ID 782393, 6 pages
http://dx.doi.org/10.1155/2014/782393
Research Article

Mathematical Models Arising in the Fractal Forest Gap via Local Fractional Calculus

1School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, China
2Electronic and Information Technology Department, Jiangmen Polytechnic, Jiangmen 529090, China
3Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar 47415-416, Iran
4African Institute for Mathematical Sciences, Muizenberg 7945, South Africa

Received 8 January 2014; Accepted 10 February 2014; Published 18 March 2014

Academic Editor: Carlo Cattani

Copyright © 2014 Chun-Ying Long et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Fielding, “Applications of fractal geometry to biology,” Computer Applications in the Biosciences, vol. 8, no. 4, pp. 359–366, 1992. View at Google Scholar
  2. B. L. Li, “Fractal geometry applications in description and analysis of patch patterns and patch dynamics,” Ecological Modelling, vol. 132, no. 1, pp. 33–50, 2000. View at Google Scholar
  3. G. Sugihara and R. M. May, “Applications of fractals in ecology,” Trends in Ecology & Evolution, vol. 5, no. 3, pp. 79–86, 1990. View at Google Scholar
  4. J. H. Brown, V. K. Gupta, B. L. Li, B. T. Milne, C. Restrepo, and G. B. West, “The fractal nature of nature: power laws, ecological complexity and biodiversity,” Philosophical Transactions of the Royal Society of London B, vol. 357, no. 1421, pp. 619–626, 2002. View at Google Scholar
  5. N. D. Lorimer, R. G. Haight, and R. A. Leary, The Fractal Forest: Fractal Geometry and Applications in Forest Science, North Central Forest Experiment Station, Berkeley, Calif, USA, 1994.
  6. B. Zeide, “Fractal geometry in forestry applications,” Forest Ecology and Management, vol. 46, no. 3, pp. 179–188, 1991. View at Google Scholar
  7. B. Zeide, “Analysis of the 3/2 power law of self-thinning,” Forest Science, vol. 33, no. 2, pp. 517–537, 1987. View at Google Scholar
  8. G. D. Peterson, “Scaling ecological dynamics: self-organization, hierarchical structure, and ecological resilience,” Climatic Change, vol. 44, no. 3, pp. 291–309, 2000. View at Google Scholar
  9. G. B. West, B. J. Enquist, and J. H. Brown, “A general quantitative theory of forest structure and dynamics,” Proceedings of the National Academy of Sciences, vol. 106, no. 17, pp. 7040–7045, 2009. View at Google Scholar
  10. G. B. West, J. H. Brown, and B. J. Enquist, “A general model for the origin of allometric scaling laws in biology,” Science, vol. 276, no. 5309, pp. 122–126, 1997. View at Google Scholar
  11. B. J. Enquist, G. B. West, E. L. Charnov, and J. H. Brown, “Allometric scaling of production and life-history variation in vascular plants,” Nature, vol. 401, no. 6756, pp. 907–911, 1999. View at Google Scholar
  12. C. S. Holling, “Cross-scale morphology, geometry, and dynamics of ecosystems,” Ecological Monographs, vol. 62, no. 4, pp. 447–502, 1992. View at Google Scholar
  13. G. Peterson, C. R. Allen, and C. S. Holling, “Ecological resilience, biodiversity, and scale,” Ecosystems, vol. 1, no. 1, pp. 6–18, 1998. View at Google Scholar
  14. D. B. Botkin, J. F. Janak, and J. R. Wallis, “Rationale, limitations, and assumptions of a northeastern forest growth simulator,” IBM Journal of Research and Development, vol. 16, no. 2, pp. 101–116, 1972. View at Google Scholar
  15. D. B. Botkin, J. F. Janak, and J. R. Wallis, “Some ecological consequences of a computer model of forest growth,” The Journal of Ecology, vol. 60, no. 3, pp. 849–872, 1972. View at Google Scholar
  16. D. B. Botkin, Forest Dynamics: An Ecological Model, Oxford University Press, New York, NY, USA, 1993.
  17. G. L. Perry and N. J. Enright, “Spatial modelling of vegetation change in dynamic landscapes: a review of methods and applications,” Progress in Physical Geography, vol. 30, no. 1, pp. 47–72, 2006. View at Google Scholar
  18. R. Chen and R. R. Twilley, “A gap dynamic model of mangrove forest development along gradients of soil salinity and nutrient resources,” Journal of Ecology, vol. 86, no. 1, pp. 37–51, 1998. View at Publisher · View at Google Scholar
  19. R. W. Hall, “JABOWA revealed-finally,” Ecology, vol. 75, no. 3, p. 859, 1994. View at Google Scholar
  20. M. I. Ashraf, C. P. A. Bourque, D. A. MacLean, T. Erdle, and F. R. Meng, “Using JABOWA-3 for forest growth and yield predictions under diverse forest conditions of Nova Scotia, Canada,” The Forestry Chronicle, vol. 88, no. 6, pp. 708–721, 2012. View at Google Scholar
  21. H. H. Shugart and I. R. Noble, “A computer model of succession and fire response of the high-altitude Eucalyptus forest of the Brindabella Range, Australian Capital Territory,” Australian Journal of Ecology, vol. 6, no. 2, pp. 149–164, 1981. View at Publisher · View at Google Scholar
  22. H. H. Shugart and D. C. West, “Development of an Appalachian deciduous forest succession model and its application to assessment of the impact of the chestnut blight,” Journal of Environmental Management, vol. 5, pp. 161–179, 1977. View at Google Scholar
  23. H. H. Shugart, A Theory of Forest Dynamics. The Ecological Implications of Forest Succession Models, Springer, New York, NY, USA, 1984.
  24. H. Bugmann, “A review of forest gap models,” Climatic Change, vol. 51, no. 3-4, pp. 259–305, 2001. View at Google Scholar
  25. M. Lindner, R. Sievänen, and H. Pretzsch, “Improving the simulation of stand structure in a forest gap model,” Forest Ecology and Management, vol. 95, no. 2, pp. 183–195, 1997. View at Publisher · View at Google Scholar
  26. X.-J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science, New York, NY, USA, 2012.
  27. X. J. Yang, Local Fractional Functional Analysis and Its Applications, Asian Academic, Hong Kong, China, 2011.
  28. X. J. Yang and D. Baleanu, “Fractal heat conduction problem solved by local fractional variation iteration method,” Thermal Science, vol. 17, no. 2, pp. 625–628, 2013. View at Google Scholar
  29. X. J. Yang, D. Baleanu, and J. H. He, “Transport equations in fractal porous media within fractional complex transform method,” Proceedings of the Romanian Academy A, vol. 14, no. 4, pp. 287–292, 2013. View at Google Scholar
  30. C. F. Liu, S. S. Kong, and S. J. Yuan, “Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem,” Thermal Science, vol. 17, no. 3, pp. 715–721, 2013. View at Google Scholar
  31. A. M. Yang, Y. Z. Zhang, and Y. Long, “The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar,” Thermal Science, vol. 17, no. 3, pp. 707–713, 2013. View at Google Scholar
  32. Y. Zhao, D. Baleanu, C. Cattani, D. F. Cheng, and X.-J. Yang, “Maxwell's equations on Cantor Sets: a local fractional approach,” Advances in High Energy Physics, vol. 2013, Article ID 686371, 6 pages, 2013. View at Publisher · View at Google Scholar
  33. X. J. Yang, D. Baleanu, and W. P. Zhong, “Approximate solutions for diffusion equations on Cantor space-time,” Proceedings of the Romanian Academy A, vol. 14, no. 2, pp. 127–133, 2013. View at Google Scholar
  34. X.-J. Yang, H. M. Srivastava, J. H. He, and D. Baleanu, “Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives,” Physics Letters A, vol. 377, no. 28–30, pp. 1696–1700, 2013. View at Publisher · View at Google Scholar
  35. K. M. Kolwankar and A. D. Gangal, “Local fractional Fokker-Planck equation,” Physical Review Letters, vol. 80, no. 2, pp. 214–217, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  36. A. Carpinteri, B. Chiaia, and P. Cornetti, “Static-kinematic duality and the principle of virtual work in the mechanics of fractal media,” Computer Methods in Applied Mechanics and Engineering, vol. 191, no. 1-2, pp. 3–19, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  37. F. Ben Adda and J. Cresson, “About non-differentiable functions,” Journal of Mathematical Analysis and Applications, vol. 263, no. 2, pp. 721–737, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  38. A. Babakhani and V. Daftardar-Gejji, “On calculus of local fractional derivatives,” Journal of Mathematical Analysis and Applications, vol. 270, no. 1, pp. 66–79, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  39. H. K. Bugmann, X. Yan, M. T. Sykes et al., “A comparison of forest gap models: model structure and behaviour,” Climatic Change, vol. 34, no. 2, pp. 289–313, 1996. View at Google Scholar · View at Scopus
  40. A. D. Moore, “On the maximum growth equation used in forest gap simulation models,” Ecological Modelling, vol. 45, no. 1, pp. 63–67, 1989. View at Google Scholar · View at Scopus
  41. A. C. Risch, C. Heiri, and H. Bugmann, “Simulating structural forest patterns with a forest gap model: a model evaluation,” Ecological Modelling, vol. 181, no. 2-3, pp. 161–172, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. D. A. Coomes and R. B. Allen, “Effects of size, competition and altitude on tree growth,” Journal of Ecology, vol. 95, no. 5, pp. 1084–1097, 2007. View at Publisher · View at Google Scholar · View at Scopus