Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
Volume 2014, Article ID 963985, 7 pages
http://dx.doi.org/10.1155/2014/963985
Research Article

On the Fractional Nagumo Equation with Nonlinear Diffusion and Convection

1Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, South Africa
2Ma SIM Focus Area, North-West University, Mafikeng 2735, South Africa

Received 2 July 2014; Accepted 20 July 2014; Published 5 August 2014

Academic Editor: Dumitru Baleanu

Copyright © 2014 Abdon Atangana and Suares Clovis Oukouomi Noutchie. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. G . Aronson, “The role of the diffusion in mathematical population biology: skellam revisited,” in Mathematics in Biology and Medicine, vol. 57 of Lecture Notes in Biomathematics, Springer, Berlin, Germany, 1985. View at Google Scholar
  2. J. D. Murray, Mathematical Biology, vol. 19, Springer, Berlin, Germany, 1989. View at Publisher · View at Google Scholar · View at MathSciNet
  3. M. A. Lewis and P. Kareiva, “Allee dynamics and the spread of invading organisms,” Theoretical Population Biology, vol. 43, no. 2, pp. 141–158, 1993. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Hosono, “Traveling wave solutions for some density dependent diffusion equations,” Japan Journal of Applied Mathematics, vol. 3, no. 1, pp. 163–196, 1986. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. P. Grindrod and B. D. Sleeman, “Weak travelling fronts for population models with density dependent dispersion,” Mathematical Methods in the Applied Sciences, vol. 9, no. 4, pp. 576–586, 1987. View at Publisher · View at Google Scholar · View at MathSciNet
  6. F. Sánchez-Garduño and P. K. Maini, “Travelling wave phenomena in non-linear diffusion degenerate Nagumo equations,” Journal of Mathematical Biology, vol. 35, no. 6, pp. 713–728, 1997. View at Publisher · View at Google Scholar · View at MathSciNet
  7. R. Laister, A. T. Peplow, and R. E. Beardmore, “Finite time extinction in nonlinear diffusion equations,” Applied Mathematics Letters, vol. 17, no. 5, pp. 561–567, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  8. M. B. A. Mansour, “Accurate computation of traveling wave solutions of some nonlinear diffusion equations,” Wave Motion, vol. 44, no. 3, pp. 222–230, 2006. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  9. J. Naoumo, S. Arimoto, and S. Yoshizawa, “An active pulse transmission line simulating nerve axon,” Proceedings of the Institute of Radio Engineers, vol. 50, pp. 2061–2070, 1962. View at Google Scholar
  10. A. C. Scott, “Neunstor propagation on a tunnel diode loaded transmission line,” Proceedings of the IEEE, vol. 51, pp. 240–249, 1963. View at Google Scholar
  11. J. Nagumo, S. Yoshizawa, and S. Arimoto, “B is table transmission lines,” IEEE Transactions on Circuit Theory, vol. 12, pp. 400–412, 1965. View at Google Scholar
  12. J. McKean, “Nagumo’s equation,” Advances in Mathematics, vol. 4, pp. 209–223, 1970. View at Publisher · View at Google Scholar · View at MathSciNet
  13. S. Hastings, “The existence of periodic solutions to Nagumo's equation,” The Quarterly Journal of Mathematics, vol. 25, pp. 369–378, 1974. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  14. C. Zhi-Xiong and G. Ben-Yu, “Analytic solutions of the Nagumo equation,” IMA Journal of Applied Mathematics, vol. 48, no. 2, pp. 107–115, 1992. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  15. M. B. A. Mansour, “On the sharp front-type solution of the Nagumo equation with nonlinear diffusion and convection,” PRAMANA Journal of Physics, vol. 80, no. 3, pp. 533–538, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Atangana and A. Kilicman, “Analytical solutions of the space-time fractional derivative of advection dispersion equation,” Mathematical Problems in Engineering, vol. 2013, Article ID 853127, 9 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  17. M. M. Meerschaert and C. Tadjeran, “Finite difference approximations for fractional advection-dispersion flow equations,” Journal of Computational and Applied Mathematics, vol. 172, no. 1, pp. 65–77, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Caputo, “Linear models of dissipation whose Q is almost frequency independent—part II,” Geophysical Journal International, vol. 13, no. 5, pp. 529–539, 1967. View at Google Scholar
  19. A. Cloot and J. F. Botha, “A generalised groundwater flow equation using the concept of non-integer order derivatives,” Water SA, vol. 32, no. 1, pp. 1–7, 2006. View at Google Scholar · View at Scopus
  20. D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, “Application of a fractional advection-dispersion equation,” Water Resources Research, vol. 36, no. 6, pp. 1403–1412, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Wu and D. Baleanu, “Variational iteration method for the Burgers' flow with fractional derivatives—new Lagrange multipliers,” Applied Mathematical Modelling, vol. 37, no. 9, pp. 6183–6190, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  22. M. Matinfar and M. Ghanbari, “The application of the modified variational iteration method on the generalized Fisher’s equation,” Journal of Applied Mathematics and Computing, vol. 31, no. 1-2, pp. 165–175, 2009. View at Publisher · View at Google Scholar · View at MathSciNet
  23. Y. Tan and S. Abbasbandy, “Homotopy analysis method for quadratic Riccati differential equation,” Communications in Nonlinear Science and Numerical Simulation, vol. 13, no. 3, pp. 539–546, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  24. J. S. Duan, R. Rach, D. Baleanu, and A. M. Wazwaz, “A review of the Adomian decomposition method and its applications to fractional differential equations,” Communications in Fractional Calculus, vol. 3, no. 2, pp. 73–99, 2012. View at Google Scholar
  25. M. Javidi and M. A. Raji, “Combinaison of Laplace transform and homotopy perturbation method to solve the parabolic partial differential equations,” Communications in Fractional Calculus, vol. 3, pp. 10–19, 2012. View at Google Scholar
  26. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, New York, NY, USA, 1993. View at MathSciNet
  27. I. Podlubny, “Geometric and physical interpretation of fractional integration and fractional differentiation,” Fractional Calculus & Applied Analysis, vol. 5, no. 4, pp. 367–386, 2002. View at Google Scholar
  28. A. Anatoly, J. Juan, and M. S. Hari, Theory and Application of Fractional Differential Equations, Elsevier, Amsterdam, The Netherlands, 2006.
  29. D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, Complexity, Nonlinearity and Chaos, World Scientific, 2012.
  30. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, The Netherland, 2006.
  31. M. Madani, M. Fathizadeh, Y. Khan, and A. Yildirim, “On the coupling of the homotopy perturbation method and Laplace transformation,” Mathematical and Computer Modelling, vol. 53, no. 9-10, pp. 1937–1945, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  32. Y. Khan and H. Latifizadeh, “Application of new optimal homotopy perturbation and Adomian decomposition methods to the MHD non-Newtonian fluid flow over a stretching sheet,” International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24, no. 1, pp. 124–136, 2014. View at Publisher · View at Google Scholar · View at MathSciNet
  33. D. Baleanu, O. G. Mustafa, and R. P. Agarwal, “On the solution set for a class of sequential fractional differential equations,” Journal of Physics A: Mathematical and Theoretical, vol. 43, no. 38, Article ID 385209, 7 pages, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  34. D. Baleanu, H. Mohammadi, and S. Rezapour, “Some existence results on nonlinear fractional differential equations,” Philosophical Transactions of the Royal Society of London A, vol. 371, no. 1990, Article ID 20120144, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  35. J.-F. Cheng and Y.-M. Chu, “Fractional difference equations with real variable,” Abstract and Applied Analysis, vol. 2012, Article ID 918529, 24 pages, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  36. F. Jarad, T. Abdeljawad, D. Baleanu, and K. Biçen, “On the stability of some discrete fractional nonautonomous systems,” Abstract and Applied Analysis, vol. 2012, Article ID 476581, 9 pages, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  37. T. Abdeljawad and D. Baleanu, “Caputo q-fractional initial value problems and a q-analogue Mittag-Leffler function,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 12, pp. 4682–4688, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  38. K. Diethelm, E. Scalas, and D. Baleanu, Fractional Calculus Series on Complexity of Series on Complexity, Nonlinearity and Chaos, vol. 3, World Scientific Publishing, 2012.
  39. A. Atangana and J. F. Botha, “Analytical solution of groundwater flow equation via homotopy decomposition method,” Journal of Earth Science & Climatic Change, vol. 3, no. 115, p. 2157, 2012. View at Google Scholar
  40. A. Atangana and A. Secer, “The time-fractional coupled-Korteweg-de-Vries equations,” Abstract and Applied Analysis, vol. 2013, Article ID 947986, 8 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  41. A. Atangana and E. Alabaraoye, “Solving system of fractional partial differential equations arisen in the model of HIV infection of CD4+ cells and attractor one-dimensional Keller-Segel equation,” Advances in Difference Equations, vol. 2013, article 94, 14 pages, 2013. View at Publisher · View at Google Scholar
  42. Y. Khan and Q. Wu, “Homotopy perturbation transform method for nonlinear equations using He's polynomials,” Computers & Mathematics with Applications, vol. 61, no. 8, pp. 1963–1967, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  43. G. C. Wu, “New trends in the variational iteration method,” Communications in Fractional Calculus, vol. 2, no. 2, pp. 59–75, 2011. View at Google Scholar
  44. G. Wu and D. Baleanu, “Variational iteration method for fractional calculus–-a universal approach by Laplace transform,” Advances in Difference Equations, vol. 2013, article 18, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus