Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
Volume 2016 (2016), Article ID 1393496, 9 pages
http://dx.doi.org/10.1155/2016/1393496
Research Article

Fréchet Envelopes of Nonlocally Convex Variable Exponent Hörmander Spaces

Departamento de Matemática Aplicada, Universidad Politécnica de Valencia, Camino de Vera, s/n, 46022 Valencia, Spain

Received 30 May 2016; Accepted 27 September 2016

Academic Editor: Hatem Mejjaoli

Copyright © 2016 Joaquín Motos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces, Foundations and Harmonic Analysis, Birkhäuser, Springer, Basel, Switzerland, 2013.
  2. L. Diening, P. Harjulehto, P. Hästö, and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics 2007, Springer, Berlin, Germany, 2011.
  3. J. Motos, M. J. Planells, and C. F. Talavera, “Duals of variable exponent Hörmander spaces 0<p-p+1 and some applications,” Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas, vol. 109, no. 2, pp. 657–668, 2015. View at Google Scholar
  4. J. Motos, M. J. Planells, and C. F. Talavera, “On variable exponent Lebesgue spaces of entire analytic functions,” Journal of Mathematical Analysis and Applications, vol. 388, no. 2, pp. 775–787, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  5. J. Motos, M. J. Planells, and C. F. Talavera, “A note on variable exponent Hörmander spaces,” Mediterranean Journal of Mathematics, vol. 10, no. 3, pp. 1419–1434, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Hörmander, The Analysis of Linear Partial Operators II, vol. 257, Springer, Berlin, Germany, 1983.
  7. J. Motos and M. J. Planells, “On sequence space representations of Hörmander-Beurling spaces,” Journal of Mathematical Analysis and Applications, vol. 348, no. 1, pp. 395–403, 2008. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  8. J. Motos, M. J. Planells, and J. Villegas, “Some embedding theorems for Hörmander-Beurling spaces,” Journal of Mathematical Analysis and Applications, vol. 364, no. 2, pp. 473–482, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  9. M. J. Planells and J. Villegas, “A note on traces of Hörmander spaces,” Boletín de la Sociedad Matemática Mexicana (3), vol. 14, no. 1, pp. 85–94, 2008. View at Google Scholar
  10. D. Vogt, “Sequence space representations of spaces of test functions and distributions,” in Functional Analysis, Holomorphy and Approximation Theory, G. I. Zapata, Ed., vol. 83 of Lecture Notes in Pure and Applied Mathematics, pp. 405–443, Dekker, New York, NY, USA, 1983. View at Google Scholar
  11. H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, Germany, 1981.
  12. N. J. Kalton, N. T. Peck, and J. W. Roberts, An F-space sampler, vol. 89 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, Uk, 1985. View at Publisher · View at Google Scholar · View at MathSciNet
  13. G. Köthe, Topological Vector Spaces I, vol. 159, Springer, Berlin, Germany, 1969. View at MathSciNet
  14. G. Köthe, Topological Vector Spaces II, vol. 237, Springer, Berlin, Germany, 1979. View at MathSciNet
  15. N. J. Kalton, “Quasi-Banach spaces,” in Handbook of the Geometry of Banach Spaces, W. B. Johnson and J. Lindenstrauss, Eds., vol. 2, pp. 1099–1130, Elsevier, Amsterdam, The Netherlands, 2003. View at Google Scholar
  16. D. Cruz-Uribe, A. Fiorenza, J. M. Martell, and C. Pérez, “The boundedness of classical operators on variable Lp spaces,” Annales Academiae Scientiarum Fennicae Mathematica, vol. 31, no. 1, pp. 239–264, 2006. View at Google Scholar
  17. H. Triebel, Theory of Function Spaces, vol. 78, Birkhäuser, Basel, Switzerland, 1983. View at Publisher · View at Google Scholar · View at MathSciNet
  18. O. Mendez and M. Mitrea, “The Banach envelopes of Besov and Triebel-Lizorkin spaces and applications to partial differential equations,” Journal of Fourier Analysis and Applications, vol. 6, no. 5, pp. 503–531, 2000. View at Publisher · View at Google Scholar · View at MathSciNet
  19. M. Hoffmann, “The Banach envelope of Paley-Wiener type spaces,” Proceedings of the American Mathematical Society, vol. 131, no. 2, pp. 543–548, 2003. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  20. J. H. Shapiro, “Mackey topologies, reproducing kernels, and diagonal maps on the Hardy and Bergman spaces,” Duke Mathematical Journal, vol. 43, no. 1, pp. 187–202, 1976. View at Publisher · View at Google Scholar · View at MathSciNet
  21. J. H. Shapiro, “Some F-spaces of harmonic functions for which the Orlicz-Pettis theorem fails,” Proceedings London Mathematical Society, vol. 3, no. 50, pp. 299–313, 1985. View at Google Scholar
  22. J. C. Díaz, “A note on isomorphisms between powers of Banach spaces,” Collectanea Mathematica, vol. 38, no. 2, pp. 137–140, 1987. View at Google Scholar · View at MathSciNet
  23. R. P. Boas, Entire Functions, Academic Press, 1954. View at MathSciNet
  24. S. Boza, Espacios de Hardy discretos y acotación de operadores [thesis], Universitat de Barcelona, Barcelona, Spain, 1998.
  25. H. Triebel, Fourier Analysis and Function Spaces, vol. 7 of Texts in Mathematics, Teubner, Leipzig, Germany, 1977.
  26. L. Hörmander, The Analysis of Linear Partial Operators I, vol. 256 of Grundlehren, Springer, Berlin, Germany, 1983.
  27. G. Metafune and V. B. Moscatelli, “Complemented subspaces of sums and products of Banach spaces,” Annali di Matematica Pura ed Applicata, vol. 153, no. 4, pp. 175–190, 1989. View at Google Scholar