Research Article  Open Access
Gustavo Asumu Mboro Nchama, Angela Leon Mecias, Mariano Rodriguez Ricard, "PeronaMalik Model with Diffusion Coefficient Depending on Fractional Gradient via CaputoFabrizio Derivative", Abstract and Applied Analysis, vol. 2020, Article ID 7624829, 15 pages, 2020. https://doi.org/10.1155/2020/7624829
PeronaMalik Model with Diffusion Coefficient Depending on Fractional Gradient via CaputoFabrizio Derivative
Abstract
The PeronaMalik (PM) model is used successfully in image processing to eliminate noise while preserving edges; however, this model has a major drawback: it tends to make the image look blocky. This work proposes to modify the PM model by introducing the CaputoFabrizio fractional gradient inside the diffusivity function. Experiments with natural images show that our model can suppress efficiently the blocky effect. Also, our model has good performance in visual quality, high peak signaltonoise ratio (PSNR), and lower value of mean absolute error (MAE) and mean square error (MSE).
1. Introduction and Some Basic Definitions
Image processing based on partial differential equations (PDEs) is mainly used for smoothing and restoration purposes. Typical PDE techniques for image smoothing regard the original image as initial states of a parabolic process and extract filtered versions from its temporal evolution. In this paper, represents the image intensity values in the position for a time , is the smooth boundary, and is the original image. It is a classical result that for any bounded , the linear diffusion process possesses the solution
For more details, see [1]. However, can be a smooth kernel or a blur kernel. In 1960, Gabor remarked that the difference between the original and the blurred image is roughly proportional to its Laplacian [2]. To formalize this remark, we have to notice that is spatially concentrated and that we may introduce a scale parameter for , namely [2], then
Here, . When gets smaller, the blurring process looks more and more like the heat equation [2]. The linear diffusion equation (1) does not only smooth noise, but it also blurs important features such as edges and, thus, makes them harder to identify. To remove the noise while preserving the edges at best, Perona and Malik proposed the following nonlinear diffusion method (called by them anisotropic diffusion) [3]: where is the original image intensity function, is the smoothed image intensity function in time , denotes the gradient, is the divergence operator, denotes the derivative in normal direction to the boundary, and is the diffusion coefficient function, also called edgestopping function. The edgestopping function is a nonnegative decreasing function satisfying two conditions. One is that as , so that the rate of diffusion is high within uniform or inner regions, and the other one is as , so that the diffusion is totally zero across boundaries. The important property of edge functions is that they should have an insignificant value for those gradients that correspond to edges [3]. In the literature, different edgestopping functions have been proposed. For example, in [3], PeronaMalik used where and is the gradient magnitude threshold parameter that decides the amount of diffusion that take place (see for instance a way to estimate it in [4]). Other expressions for the diffusion coefficient can be found in [1, 5, 6].
The flow function defined as represents the sum of the brightness flow that is generated. The maximum flow is generated at locations where [7].
The PeronaMalik equation (6) and the large amount of its modifications [5, 8–11] have demonstrated to be able to achieve a good tradeoff between noise removal and edge preservation. Unfortunately, edgestopping functions lead to backwardforward problems that are illposed [1]; for this reason, in [8, 12], authors introduced a modification in the diffusion coefficient to obtain a regularized version as follows: where is a bounded domain of with an appropriately smooth boundary, denotes the unit outer normal to , and . The term is the regularized version of , and it is the gradient of the solution at time of the linear heat equation (1). Despite the illposedness, the practical results seem to be quite good in most cases. As reported by Weickert in [1], the reason is that the numerical scheme used by Perona and Malik does not correspond to their equation but rather to a timeregularized one which is wellposed this time. Numerically, the mainly observable instability is the socalled staircase (blocky) effect, where a sigmoid edge evolves into piecewise linear segments that are separated by jumps. This effect is visually unpleasant and is likely to cause a computer vision system to falsely recognize as edges the boundaries of different blocks that belong to the same smooth area in the original image [13].
To avoid staircase effects while achieving a good tradeoff between noise removal and edge preservation, many authors have proposed to use fourthorder partial differential equations [13]. For example, You and Kaveh proposed in [13–17] a fourthorder PDE for noise removal and an algorithm that can remove speckle effect efficiently. In [15], the authors studied the fourthorder telegraphdiffusion equation for image restoration in which the numerical method not only preserves the edge but also avoids the staircase effects, and the existence, uniqueness, and stability were stabilized. The experiments show that all these fourthorder models can improve the peak signaltonoise ratio, preserve texture, and eliminate the staircase (blocky) effect efficiently (see [18] and the references therein). The problem with the use of fourthorder equations is that they tend to leave the image with isolated black and white speckles (socalled speckle effect). This effect is characterized as pixels whose intensity values are either much larger or much smaller than those of the neighboring pixels [13, 19]. To eliminate the undesirable speckle effect, in [20], the energy functional associated with the PeronaMalik equation is redefined as an increasing function of the absolute value of the image intensity fractional derivative function (defined in the Fourier domain). The corresponding EulerLagrange equation is then a fractionalorder anisotropic diffusion equation. The proposed pseudoPDEs will lead to an interpolation between PeronaMalik equations and fourthorder anisotropic diffusion equations in [13]. In [18], a fractionalorder PeronaMalik diffusion (FOPMD) equation is proposed. In this model, the integerorder derivative concerning spatial variables of the PeronaMalik diffusion is replaced with the fractionalorder GrunwaldLetnikov derivatives (Polubny). The FOPMD model is given by where the fractional order is () and is the smooth gray scale image at time . The fractionalorder gradient vector with order is defined as where represents the partialorder derivative of with respect to the variable whose order is . Although model (15) has reported good performance of preserving edges and suppressing staircase and speckle effect, the resulting images still have some artifacts. Therefore, in [21], a new diffusion model named regularized fully spatial fractionalorder PeronaMalik diffusion (RFSFOPMD) is proposed, given by
As observed, equation (19) is obtained by substituting in equation (12), the integer spatial derivative for fractionalorder derivative according to GrunwaldLetnikov. The fractionalorder is taken as . With this method, results obtained in [18] are improved, partly by improving the performance of edges locating by regularization [21]. Despite this, there are still errors in locating the position of the edges. In [22], it is said that the basic reason for locating edge positions falsely is that the fractionalorder gradient module cannot be used as an edge indicator; therefore, the authors in [22] adopted a socalled external fractionalorder gradient vector PeronaMalik diffusion by only replacing integerorder derivatives of the external gradient vector to their fractionalorder counterparts while keeping firstorder derivatives for diffusion coefficient. The model is the same as [9] except for the derivative used in the diffusion coefficient. A novel fractional PDE model is given by Guidotti and Longo in [23]; they address the wellposedness of the following fourthorder model for noise removal, using fractional derivatives defined by Fourier transform. with periodic and . Model (22) is a modification of the You and Kaveh model [13]. As numerical approximation of the equation, they used a scheme based on the Krylov subspace spectral method.
There are many definitions of fractional derivatives (three popular definitions were given by GrunwaldLetnikov (GL), RiemannLiouville (RL), and Caputo). These have been used in numerous fields of science such as study of the anomalous diffusion phenomenon [24–26], circuit theory [27–29], and image processing [30, 31], among other applications [11, 32–48]. Given the discussion above, we consider that using anisotropic diffusion models to eliminate noise in an image, preserving both strong and weak edges and without phenomena such as staircase, speckle, or any type of artifact, is a subject where much remains to be investigated. In image processing, integerorder differentiation operators are often used in edge detection, especially the first order for the gradient (e.g., Roberts, Prewitt, and Sobel) and second order for the Laplacian (e.g., Laplacian of Gaussian). However, the firstorder derivative methods generally cause thicker edges, resulting in the loss of image details. The secondorder derivative methods have a stronger response to fine detail, but they are more sensitive to noise [49]. To solve this problem, the fractionalorder derivative has been introduced in the edge detection methods, with the capability to preserve more lowfrequency contour features in the smooth areas, maintain highfrequency marginal features, and also enhance mediumfrequency texture details [49, 50]. Many fractionalorder operators are used for edge detection, such as the fractionalorder Sobel operator [31], fractionalorder CRONE operator [51], and quaternion fractional differential operator [52].
Inspired by these ideas, and taking into account that the use of fractional derivatives inside the diffusivity function has proven to be robust in the presence of noise as said in [53], we present a modification to the PeronaMalik model. Instead of the diffusion coefficient controlling the diffusion from the threshold of the integerorder gradient, it does so according to the fractionalorder gradient threshold. Our goal by incorporating the fractional gradient into the diffusion coefficient is to avoid undesirable artifacts such as blocky effect while removing noise and preserving edges. To the best of our knowledge, from the consulted literature, this model using the recently defined CaputoFabrizio derivative has not been used. Caputo and Fabrizio introduced a new fractional derivative in [54], intending to describe structures with different scales.
We propose to insert the CaputoFabrizio fractional gradient into the diffusivity function as follows:
The flow function corresponding to equation (25) is a function depending on two variables and takes the following form: where is given by (9) and and . This means that the graph of function (28) is a surface. For simplicity reasons, the integerorder gradient will be fixed by a real positive value while the fractionalorder gradient will be taken as the independent variable. The simulation of function (28) with different values of produces pictures related to Figure 1. From these simulations, we observe that for , the flow function takes higher values. Otherwise, when takes great values, we see a different behavior.
(a)
(b)
(c)
(d)
1.1. Some Basic Definitions in Fractional Calculus
Let , such that and . We denote by the space of all continuous functions on with compact support. We denote as
The Sobolev space is defined by
We set
Three popular definitions of fractional calculus were given by GrunwaldLetnikov (GL), RiemannLiouville (RL), and Caputo. Of these, GL and RL are the most popular definitions used in digital image processing. Recently, Caputo and Fabrizio introduced a new fractional derivative in [54]. Considering the spatial variable, it is defined as with and . For more details, see [4, 54–59].
The remainder of this paper is organized as follows: Section 2 presents discretization of numerical schemes. Experimental results are provided in Section 3. Finally, conclusions are summarized in Section 4.
2. Numerical Schemes
The main purpose of this section is to give an explicit finite difference scheme of the proposed model. For it, we will start discretizing the CaputoFabrizio fractional derivative. Next, we will recall the numerical approximation for the PM equation.
2.1. Discretization of the CaputoFabrizio Derivative
To solve numerically the new fractional PeronaMalik model, we propose to discretize the CaputoFabrizio derivative based on the forward finite difference scheme in the interval (analogously ). Let us take a partition of nodes of the interval , with step and ; then, we obtain
As in digital gray image , the shortest distance of 2D image on and coordinates is one pixel; then, we put , and from (32), we obtain where
An analogue expression is obtained for .
2.2. PeronaMalik Scheme
Here, we recall the numerical approximation for the PM equation. Let and be the space steps such that , and denoting the time step as , the discretization of the PM equation is given in [13], as where with for the numerical scheme to be stable.
2.3. Numerical Method of the Proposed Model
As we said above, we propose to introduce the CaputoFabrizio fractional gradient inside the diffusivity function of the PeronaMalik model where is used in this work. Considering that then the discretization of , using the forward finite difference scheme, is given by
The discrete fractionalorder gradient is an 8dimensional vector, as in [18]: where represents the transpose of the vector and each component is defined as where is given by (34). The discretization of the usual gradient, following the idea in [3], in eight directions, is given by where , , , and are defined as in (37), (38), (39), and (40), respectively, and
The subscripts N, S, E, W, NE, SW, NW, and SE denote the eight directions North, South, East, West, NorthEast, SouthWest, NorthWest, and SouthEast. Hence, the explicit discretization scheme for equation (42) is given by where
3. Experimental Results
In this section, experimental results are obtained applying the proposed fractionalorder model on the images which were corrupted by the Gaussian noise with mean zero and variances and . Gaussian noise is common in images acquired by cameras and telescopes, and it modifies all the pixels of the image. Furthermore, this noise type is one of the most studied in the literature on account of the frequency with which it occurs in practical situations. Our model is compared with the classical PeronaMalik (PM) anisotropic diffusion model. We set and used and . To implement equation (53) numerically, in (47), we considered , which means that in the approximation of fractional derivative, we take into account two points in each direction for experimental calculus. In the literature, there are some methodologies for the estimation of the contrast parameter [61]. However, for reasons of simplification, we will use fixed contrast parameters which are . The number of iterations used is 40. The performance of the two PDE filters has been assessed by using some wellknown quality measures such as the PSNR (peak signaltonoise ratio), MSE (mean square error), and MAE (mean absolute error) which are defined by [60] where and denote the width and height of the image, respectively, is the pixel in the filtered image, and is the pixel in the original image. denotes norm and denotes norm (Euclidean distance). In the comparison of statistic parameters, it is important to note that the larger the PSNR value, the better the statistical result. On the contrary, the smaller the MSE and MAE, the better the result of the model.
Figures 2–7 show a comparison of denoised images obtained by our proposal and the PeronaMalik models. Tables 1–3 show the performance of our proposal compared to the PeronaMalik model using the quality measures MAE, MSE, and PSNR. All these tables have been obtained by using . From Tables 1–3, it can be seen that the PSNR values of the proposed algorithm are higher than those of the PeronaMalik model; thus, it can efficiently delete the noise while preserving the original content of the image. Meanwhile, the values of MAE and MSE of the proposed algorithm are lower, which shows that the proposed method can better preserve texture details in the denoised image and has a better visual effects. Images of the third and fourth rows of Figures 2–7 have been obtained by using and , respectively. After employing the proposed filter with the two previous mentioned values combined with the above indicated threshold parameters , we observed that the parameter with the best statistic results is when , as shown in Tables 1–3.
(a)
(b)
(c)
(d)
(a)
(b)
(c)
(d)
(a)
(b)
(c)
(d)
(a)
(b)
(c)
(d)
(a)
(b)
(c)
(d)
(a)
(b)
(c)
(d)



4. Conclusion
In this paper, we proposed a new version of PeronaMalik diffusion (PMD) using the CaputoFabrizio fractional gradient inside the diffusivity function. Experiments showed that filtered images by the proposed method look better than results with the PeronaMalik filter. Our technique has demonstrated good performance in visual quality, higher peak signaltonoise ratio (PSNR), and lower value of mean absolute error (MAE) and mean square error (MSE) than the PeronaMalik filter. Images of the third and fourth rows from Figures 2–7 have been obtained by using and , respectively. Experiments show that the best statistics are obtained for the fractional derivative of order when , as can be seen in Tables 1–3. As future work, we want to introduce the convolution between the CaputoFabrizio fractional gradient and the Gaussian filter inside the edgestopping function.
Data Availability
To support this study, the USCSIPI Image Database was used.
Conflicts of Interest
The authors declare that they have no conflict of interest.
Acknowledgments
This work is supported by Universidad Nacional de Guinea Ecuatorial (UNGE) and Havana University.
References
 J. Weickert, Anisotropic Diffusion in Image Processing, vol. 1, Teubner, Stuttgart, 1998.
 F. Guichard, L. Moisan, and J.M. Morel, “A review of P.D.E. models in image processing and image analysis,” Journal de Physique IV (Proceedings), vol. 12, no. 1, pp. 137–154, 2002. View at: Publisher Site  Google Scholar
 P. Perona and J. Malik, “Scalespace and edge detection using anisotropic diffusion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 7, pp. 629–639, 1990. View at: Publisher Site  Google Scholar
 J. Losada and J. Nieto, “Properties of a new fractional derivative without singular kernel,” Progress in Fractional Differentiation and Applications, vol. 1, pp. 87–92, 2015. View at: Google Scholar
 J. Yuan and J. Wang, “PeronaMalik model with a new diffusion coefficient for image denoising,” International Journal of Image and Graphics, vol. 16, no. 2, article 1650011, 2016. View at: Publisher Site  Google Scholar
 V. Kamalaveni, R. A. Rajalakshmi, and K. A. Narayanankutty, “Image denoising using variations of PeronaMalik model with differents edges stopping functions,” Procedia Computer Science, vol. 58, pp. 673–682, 2015. View at: Publisher Site  Google Scholar
 C. Tsiotsios and M. Petrou, “On the choice of the parameters for anisotropic diffusion in image processing,” Pattern Recognition, vol. 46, no. 5, pp. 1369–1381, 2013. View at: Publisher Site  Google Scholar
 F. Catté, P. L. Lions, J. M. Morel, and T. Coll, “Image selective smoothing and edge detection by nonlinear diffusion,” SIAM Journal on Numerical Analysis, vol. 29, no. 1, pp. 182–193, 1992. View at: Publisher Site  Google Scholar
 J. Yu, R. Zhai, S. Zhou, and L. Tan, “Image denoising based on adaptive fractional order with improved PM model,” Mathematical Problems in Engineering, vol. 2018, Article ID 9620754, 11 pages, 2018. View at: Publisher Site  Google Scholar
 N. Wang, Y. Shang, Y. Chen et al., “A hybrid model for image denoising combining modified isotropic diffusion model and modified PeronaMalik model,” IEEE Access, vol. 6, pp. 33568–33582, 2018. View at: Publisher Site  Google Scholar
 V. B. Surya Prasath, “Image denoising by anisotropic diffusion with interscale information fusion,” Pattern Recognition and Image Analysis, vol. 27, no. 4, pp. 748–753, 2017. View at: Publisher Site  Google Scholar
 L. Alvarez, P. L. Lions, and J. M. Morel, “Image selective smoothing and edge detection by nonlinear difusion II,” SIAM Journal on Numerical Analysis, vol. 29, no. 3, pp. 845–866, 1992. View at: Publisher Site  Google Scholar
 Y.L. You and M. Kaveh, “Fourthorder partial differential equations for noise removal,” IEEE Transactions on Image Processing, vol. 9, no. 10, pp. 1723–1730, 2000. View at: Publisher Site  Google Scholar
 P. Guidotti and K. Longo, “Two enhanced fourth order diffusion models for image denoising,” Journal of Mathematical Imaging and Vision, vol. 40, no. 2, pp. 188–198, 2011. View at: Publisher Site  Google Scholar
 W. Zeng, X. Lu, and X. Tan, “A class of fourthorder telegraphdiffusion equations for image restoration,” Journal of Applied Mathematics, vol. 2011, Article ID 240370, 20 pages, 2011. View at: Publisher Site  Google Scholar
 A. Theljani, Z. Belhachmi, and M. Moakher, “Highorder anisotropic diffusion operators in spaces of variable exponents and application to image inpainting and restoration problems,” Nonlinear Analysis: Real World Applications, vol. 47, pp. 251–271, 2019. View at: Publisher Site  Google Scholar
 X. Liu, L. Huang, and Z. Guo, “Adaptive fourthorder partial differential equation filter for image denoising,” Applied Mathematics Letters, vol. 24, no. 8, pp. 1282–1288, 2011. View at: Publisher Site  Google Scholar
 S. Hu, Z. Liao, and W. Chen, “Sinogram restoration for lowdosed Xray computed tomography using fractional order PeronaMalik diffusion,” Mathematical Problems in Engineering, vol. 2012, Article ID 391050, 13 pages, 2012. View at: Publisher Site  Google Scholar
 M. Janev, S. Pilipović, T. Atanacković, R. Obradović, and N. Ralević, “Fully fractional anisotropic diffusion for image denoising,” Mathematical and Computer Modelling, vol. 54, no. 12, pp. 729–741, 2011. View at: Publisher Site  Google Scholar
 J. Bai and X.C. Feng, “Fractional order anisotropic diffusion for image denoising,” IEEE Transactions on Image Processing, vol. 16, no. 10, pp. 2492–2502, 2007. View at: Publisher Site  Google Scholar
 Z. Liao, “Lowdosed Xray computed tomography imaging by regularized fully spatial fractionalorder PeronaMalik diffusion,” Mathematical Problems in Engineering, vol. 2013, Article ID 371868, 9 pages, 2013. View at: Publisher Site  Google Scholar
 S. Hu, “External fractionalorder gradient vector PeronaMalik diffusion for sinogram restoration of lowdosed Xray computed tomography,” Advances in Mathematical Physics, vol. 2013, Article ID 516919, 10 pages, 2013. View at: Publisher Site  Google Scholar
 P. Guidotti and K. Longo, “Wellposedness for a class of fourth order diffusions for image processing,” Nonlinear Differential Equations and Applications, vol. 18, no. 4, pp. 407–425, 2011. View at: Publisher Site  Google Scholar
 C. Ramírez, V. Astorga, H. Nuñez, A. Jaques, and R. Simpson, “Anomalous diffusion based on fractional calculus approach applied to drying analysis of apple slices: the effects of relative humidity and temperature,” Food Process Engineering, vol. 40, no. 5, article e12549, 2017. View at: Publisher Site  Google Scholar
 M. Concezzi and R. Spigler, “Identifying the fractional orders in anomalous diffusion models from real data,” Fractal and Fractional, vol. 2, no. 1, p. 14, 2018. View at: Publisher Site  Google Scholar
 X. Liang, F. Gao, C. B. Zhou, Z. Wang, and X. J. Yang, “An anomalous diffusion model based on a new general fractional operator with the MittagLeffler function of Wiman type,” Advances in Difference Equations, vol. 2018, no. 1, 2018. View at: Publisher Site  Google Scholar
 A. M. F. Andrade, E. G. Lima, and C. A. Dartora, “An introduction to fractional calculus and its applications in electric circuits,” Revista Brasileira de Ensino de Física, vol. 40, article e3314, 2018. View at: Google Scholar
 V. F. MoralesDelgado, J. F. GómezAguilar, and M. A. TanecoHernandez, “Analytical solutions of electrical circuits described by fractional conformable derivatives in LiouvilleCaputo sense,” International Journal of Electronics and Communications, vol. 85, pp. 108–117, 2018. View at: Publisher Site  Google Scholar
 R. Sikora, “Fractional derivatives in electrical circuit theory critical remarks,” Archives of Electrical Engineering, vol. 66, no. 1, pp. 155–163, 2017. View at: Publisher Site  Google Scholar
 M. Rchid, S. Ammi, and I. Jamiai, “Finite difference and Legendre spectral method for a timefractional diffusionconvection equation for image restoration,” Discrete and Continuous Dynamical Systems Series, vol. 11, no. 1, pp. 103–117, 2018. View at: Publisher Site  Google Scholar
 A. Nandal, H. GamboaRosales, A. Dhaka et al., “Image edge detection using fractional calculus with feature and contrast enhancement,” Circuits, Systems, and Signal Processing, vol. 37, no. 9, pp. 3946–3972, 2018. View at: Publisher Site  Google Scholar
 A. elAjou, M. N. Oqielat, Z. alZhour, S. Kumar, and S. Momani, “Solitary solutions for timefractional nonlinear dispersive PDEs in the sense of conformable fractional derivative,” Chaos, vol. 29, no. 9, article 093102, 2019. View at: Publisher Site  Google Scholar
 E. F. Doungmo Goufo, S. Kumar, and S. B. Mugisha, “Similarities in a fifthorder evolution equation with and with no singular kernel,” Chaos, Solitons & Fractals, vol. 130, article 109467, 2020. View at: Publisher Site  Google Scholar
 S. Kumar, A. Kumar, and K. S. Nisar, “Numerical solutions of nonlinear fractional model arising in the appearance of the strip patterns in twodimensional systems,” Advances in Difference Equations, vol. 2019, no. 1, 2019. View at: Publisher Site  Google Scholar
 S. Kumar, K. S. Nisar, R. Kumar, C. Cattani, and B. Samet, “A new Rabotnov fractional‐exponential function‐based fractional derivative for diffusion equation under external force,” Mathematical Methods in the Applied Sciences, vol. 43, pp. 4460–4471, 2020. View at: Publisher Site  Google Scholar
 S. Kumar, A. Kumar, S. Abbas, M. Al Qurashi, and D. Baleanu, “A modified analytical approach with existence and uniqueness for fractional Cauchy reaction–diffusion equations,” Advances in Difference Equations, vol. 2020, no. 1, Article ID 28, 2020. View at: Publisher Site  Google Scholar
 S. Kumar, “A new fractional modeling arising in engineering sciences and its analytical approximate solution,” Alexandria Engineering Journal, vol. 52, no. 4, pp. 813–819, 2013. View at: Publisher Site  Google Scholar
 M. Oqielat, A. ElAjou, Z. AlZhour, R. Alkhasawneh, and H. Alrabaiah, “Series solutions for nonlinear timefractional Schrodinger equations: comparisons between conformable and Caputo derivatives,” Alexandria Engineering Journal, 2020. View at: Publisher Site  Google Scholar
 A. elAjou, Z. alZhour, M. Oqielat, S. Momani, and T. Hayat, “Series solutions of nonlinear conformable fractional KdVBurgers equation with some applications,” The European Physical Journal Plus, vol. 134, no. 8, p. 402, 2019. View at: Publisher Site  Google Scholar
 Z. AlZhour, M. Barfeie, F. Soleymani, and E. Tohidi, “A computational method to price with transaction costs under the nonlinear BlackScholes model,” Solitons & Fractals, vol. 127, pp. 291–301, 2019. View at: Publisher Site  Google Scholar
 A. elAjou, M. N. Oqielat, Z. alZhour, and S. Momani, “Analytical numerical solutions of the fractional multipantograph system: two attractive methods and comparisons,” Results in Physics, vol. 14, article 102500, 2019. View at: Publisher Site  Google Scholar
 R. Kumar, S. Kumar, J. Singh, and Z. AlZhour, “A comparative study for fractional chemical kinetics and carbon dioxide CO_{2} absorbed into phenyl glycidyl ether problems,” AIMS Mathematics, vol. 5, no. 4, pp. 3201–3222, 2020. View at: Publisher Site  Google Scholar
 D. Baleanu, A. Jajarmi, S. S. Sajjadi, and D. Mozyrska, “A new fractional model and optimal control of a tumorimmune surveillance with nonsingular derivative operator,” Chaos, vol. 29, no. 8, article 083127, 2019. View at: Publisher Site  Google Scholar
 A. Jajarmi, S. Arshad, and D. Baleanu, “A new fractional modelling and control strategy for the outbreak of dengue fever,” Physica A, vol. 535, p. 122524, 2019. View at: Publisher Site  Google Scholar
 A. Jajarmi, D. Baleanu, S. S. Sajjadi, and J. H. Asad, “A new feature of the fractional EulerLagrange equations for a coupled oscillator using a nonsingular operator approach,” Frontiers in Physics, vol. 7, article 00196, 2019. View at: Publisher Site  Google Scholar
 A. Jajarmi, B. Ghanbari, and D. Baleanu, “A new and efficient numerical method for the fractional modeling and optimal control of diabetes and tuberculosis coexistence,” Chaos, vol. 29, no. 9, article 093111, 2019. View at: Publisher Site  Google Scholar
 G. A. M. Boro Nchama, “Properties of CaputoFabrizio fractional operators,” New Trends in Mathematical Sciences, vol. 1, no. 8, pp. 1–25, 2020. View at: Publisher Site  Google Scholar
 G. A. MboroNchama, A. L. Mecías, and M. R. Ricard, “The CaputoFabrizio fractional integral to generate some new inequalities,” Information Sciences Letters, vol. 8, no. 2, pp. 73–80, 2019. View at: Publisher Site  Google Scholar
 R. A. ZeidDaou, F. ElSamarani, C. Yaacoub, and X. Moreau, “Fractional derivatives for edge detection: application to road obstacles,” in Smart Cities Performability, Cognition, & Security. EAI/Springer Innovations in Communication and Computing, F. AlTurjman, Ed., pp. 115–137, Springer, Cham, 2020. View at: Publisher Site  Google Scholar
 M. Hacini, A. Hacini, H. Akdag, and F. Hachouf, “A 2Dfractional derivative mask for image feature edge detection,” in 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), pp. 1–6, Fez, Morocco, 2017. View at: Publisher Site  Google Scholar
 D. Li, C. Zhao, M. Jiang, Y. Huang, and Y. Li, “Fractional order edge detection method,” in 2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN), pp. 529–534, Chongqing, China, 2019. View at: Publisher Site  Google Scholar
 C. B. Gao, J. L. Zhou, J. R. Hu, and F. N. Lang, “Edge detection of colour image based on quaternion fractional differential,” IET Image Processing, vol. 5, no. 3, pp. 261–272, 2011. View at: Publisher Site  Google Scholar
 B. Mathieu, P. Melchior, A. Outstaloup, and C. Ceyral, “Fractional differentiation for edge detection,” Signal Processing, vol. 83, no. 11, pp. 2421–2432, 2003. View at: Publisher Site  Google Scholar
 M. Caputo and M. Fabrizio, “A new definition of fractional derivative without singular kernel,” Progress in Fractional Differentiation and Applications, vol. 1, no. 2, pp. 1–13, 2015. View at: Google Scholar
 N. alSalti, E. Karimov, and S. Kerbal, “Boundaryvalue problems for fractional heat equation involving CaputoFabrizio derivative,” New Trends in Mathematical Sciences, vol. 4, no. 4, pp. 7980, 2016. View at: Publisher Site  Google Scholar
 E. Lieb and M. Loss, “Analysis,” American Mathematical Society, vol. 14, 2001. View at: Google Scholar
 M. Caputo and M. Fabrizio, “Applications of new time and spatial fractional derivatives with exponential kernels,” Progress in Fractional Differentiation and Applications, vol. 2, no. 1, pp. 1–11, 2016. View at: Publisher Site  Google Scholar
 X. J. Yang, H. M. Srivastava, and T. Machado J.A., “A new fractional derivative without singular kernel: application to the modelling of the steady heat flow,” Thermal Science, vol. 20, no. 2, pp. 753–756, 2016. View at: Publisher Site  Google Scholar
 H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equation, Springer Science & Business Media, 2010.
 J. Xu, L. Wang, and Z. Shi, “A switching weighted vector median filter based on edge detection,” Signal Processing, vol. 98, pp. 359–369, 2014. View at: Publisher Site  Google Scholar
 M. B. Fernández, M. G. Hidalgo, and A. L. Mecías, “New estimation method of the contrast parameter for the Perona–Malik diffusion equation,” Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, vol. 4, pp. 238–252, 2014. View at: Publisher Site  Google Scholar
Copyright
Copyright © 2020 Gustavo Asumu Mboro Nchama et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.