Table of Contents Author Guidelines Submit a Manuscript
Advances in Agriculture
Volume 2014, Article ID 587070, 7 pages
http://dx.doi.org/10.1155/2014/587070
Review Article

Genes Acting on Transcriptional Control during Abiotic Stress Responses

Plant Genomics and Breeding Center, Federal University of Pelotas, 96001-970 Pelotas, RS, Brazil

Received 30 April 2014; Revised 17 July 2014; Accepted 22 July 2014; Published 25 August 2014

Academic Editor: Mahmut Tör

Copyright © 2014 Glacy Jaqueline da Silva and Antonio Costa de Oliveira. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Poehlmann and D. A. Sleper, “Breeding wheat,” in Breeding Field Crops, pp. 259–277, Iowa State University Press, Ames, Iowa, USA, 1995. View at Google Scholar
  2. M. E. Ferreira and D. Grattapaglia, “Introdução ao uso de marcadores moleculares em análise genética,” EMBRAPA/CENARGEN, 1996.
  3. E. Ruelland and A. Zachowski, “How plants sense temperature,” Environmental and Experimental Botany, vol. 69, no. 3, pp. 225–232, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Santos, V. F. Guimarães, J. Klein et al., “Cultivares de trigo submetidas a déficit hídrico no início do florescimento, em casa de vegetação,” Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 8, pp. 836–842, 2012. View at Google Scholar
  5. S. Nagarajan, “Abiotic tolerance and crop improvement,” in Abiotic Stress Adaptation in Plants Physiological, Molecular and Genomic Foundation, A. Pareek, S. K. Sopory, and H. J. Bohnert, Eds., Springer, 2010. View at Google Scholar
  6. W. Wang, B. Vinocur, O. Shoseyov, and A. Altman, “Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response,” Trends in Plant Science, vol. 9, no. 5, pp. 244–252, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Thawornwong and A. van Diest, “Influences of high acidity and aluminum on the growth of lowland rice,” Plant and Soil, vol. 41, no. 1, pp. 141–159, 1974. View at Publisher · View at Google Scholar · View at Scopus
  8. C. D. Foy and A. L. Fleming, “Aluminium tolerance of two wheat cultivars related to nitrate reductase activities,” Journal of Plant Nutrition, vol. 5, pp. 1313–1333, 1982. View at Google Scholar
  9. A. S. Moffat, “Finding new ways to protect drought-stricken plants,” Science, vol. 296, no. 5571, pp. 1226–1229, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. A. K. Singh, S. K. Sopory, R. Wu, and S. L. Singla-Pareek, “Transgenics aproaches,” in Abiotic Stress Adaptation in Plants, A. Pareek, S. K. Sopory, and H. J. Bohnert, Eds., pp. 417–450, Springer, Amsterdam, The Netherlands, 2010. View at Publisher · View at Google Scholar
  11. P. Bhatnagar-Mathur, V. Vadez, and K. K. Sharma, “Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects,” Plant Cell Reports, vol. 27, no. 3, pp. 411–424, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Vinocur and A. Altman, “Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations,” Current Opinion in Biotechnology, vol. 16, no. 2, pp. 123–132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. Z. N. Ozturk, V. Talamé, M. Deyholos et al., “Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley,” Plant Molecular Biology, vol. 48, no. 5-6, pp. 551–573, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Schrank, “Transcrição,” in Biologia Molecular Básica, A. Zaha, H. B. Ferreira, and L. M. P. Passaglia, Eds., vol. 4, pp. 401–406, 2012. View at Google Scholar
  15. N. Mitsuda and M. Ohme-Takagi, “Functional analysis of transcription factors in arabidopsis,” Plant and Cell Physiology, vol. 50, no. 7, pp. 1232–1248, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. Arabidopsis Genome Initiative, “Analysis of the genome sequence of the flowering plant Arabidopsis thaliana,” Nature, vol. 408, pp. 796–815, 2000. View at Google Scholar
  17. K. Iida, M. Seki, T. Sakurai et al., “RARTF: database and tools for complete sets of Arabidopsis transcription factors,” DNA Research, vol. 12, no. 4, pp. 247–256, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. D. M. Riaño-Pachón, S. Ruzicic, I. Dreyer, and B. Mueller-Roeber, “PlnTFDB: an integrative plant transcription factor database,” BMC Bioinformatics, vol. 8, article 42, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. J. L. Riechmann, J. Heard, G. Martin et al., “Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes,” Science, vol. 290, no. 5499, pp. 2105–2110, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. J. L. Riechmann and O. J. Ratcliffe, “A genomic perspective on plant transcription factors,” Current Opinion in Plant Biology, vol. 3, no. 5, pp. 423–434, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Umezawa, M. Fujita, Y. Fujita, and K. Yamaguchi-Shinozaki, “Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future,” Current Opinion in Biotechnology, vol. 17, no. 2, pp. 113–122, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Eulgem, P. J. Rushton, S. Robatzek, and I. E. Somssich, “The WRKY superfamily of plant transcription factors,” Trends in Plant Science, vol. 5, no. 5, pp. 199–206, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. I. Winicov and D. R. Bastola, “Transgenic overexpression of the transcription factor Alfin1 enhances expression of the endogenous MsPRP2 gene in alfalfa and improves salinity tolerance of the plants,” Plant Physiology, vol. 120, no. 2, pp. 473–480, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Mukhopadhyay, S. Vij, and A. K. Tyagi, “Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 16, pp. 6309–6314, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Davletova, K. Schlauch, J. Coutu, and R. Mittler, “The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis,” Plant Physiology, vol. 139, no. 2, pp. 847–856, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Iida, T. Kazuoka, S. Torikai, H. Kikuchi, and K. Oeda, “A zinc finger protein RHL41 mediates the light acclimatization response in Arabidopsis,” Plant Journal, vol. 24, no. 2, pp. 191–203, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Sakamoto, K. Maruyama, Y. Sakuma et al., “Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions,” Plant Physiology, vol. 136, no. 1, pp. 2734–2746, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Yanhui, Y. Xiaoyuan, H. Kun et al., “The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family,” Plant Molecular Biology, vol. 60, no. 1, pp. 107–124, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Jia, M. T. Clegg, and T. Jiang, “Evolutionary dynamics of the DNA-binding domains in putative R2R3-MYB genes identified from rice subspecies indica and japonica genomes,” Plant Physiology, vol. 134, no. 2, pp. 575–585, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Dubos, R. Stracke, E. Grotewold, B. Weisshaar, C. Martin, and L. Lepiniec, “MYB transcription factors in Arabidopsis,” Trends in Plant Science, vol. 15, no. 10, pp. 573–581, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Cominelli, M. Galbiati, A. Vavasseur et al., “A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance,” Current Biology, vol. 15, no. 13, pp. 1196–1200, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. P. J. Seo, F. Xiang, M. Qiao et al., “The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis,” Plant Physiology, vol. 151, no. 1, pp. 275–289, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. P. J. Seo and C. Park, “MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis,” New Phytologist, vol. 186, no. 2, pp. 471–483, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. J. L. Reyes and N. Chua, “ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination,” Plant Journal, vol. 49, no. 4, pp. 592–606, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. X. Dai, Y. Wang, A. Yang, and W. Zhang, “OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice,” Plant Physiology, vol. 159, no. 1, pp. 169–183, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. H. C. Yong, H. Chang, R. Gupta, X. Wang, T. Zhu, and S. Luan, “Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis,” Plant Physiology, vol. 129, no. 2, pp. 661–677, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Agarwal, M. P. Reddy, and J. Chikara, “WRKY: its structure, evolutionary relationship, DNA-binding selectivity, role in stress tolerance and development of plants,” Molecular Biology Reports, vol. 38, no. 6, pp. 3883–3896, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. Z. Ding, S. Li, X. An, X. Liu, H. Qin, and D. Wang, “Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana,” Journal of Genetics and Genomics, vol. 36, no. 1, pp. 17–29, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. Xiong, T. Liu, C. Tian, S. Sun, J. Li, and M. Chen, “Transcription factors in rice: a genome-wide comparative analysis between monocots and eudicots,” Plant Molecular Biology, vol. 59, no. 1, pp. 191–203, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Hu, J. You, Y. Fang, X. Zhu, Z. Qi, and L. Xiong, “Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice,” Plant Molecular Biology, vol. 67, no. 1-2, pp. 169–181, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Aida, T. Ishida, H. Fukaki, H. Fujisawa, and M. Tasaka, “Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant,” The Plant Cell, vol. 9, no. 6, pp. 841–857, 1997. View at Publisher · View at Google Scholar · View at Scopus
  42. L. P. Tran, K. Nakashima, Y. Sakuma et al., “Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter,” Plant Cell, vol. 16, no. 9, pp. 2481–2498, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Hu, M. Dai, J. Yao et al., “Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 35, pp. 12987–12992, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. X. Zheng, B. Chen, G. Lu, and B. Han, “Overexpression of a NAC transcription factor enhances rice drought and salt tolerance,” Biochemical and Biophysical Research Communications, vol. 379, no. 4, pp. 985–989, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Hegedus, M. Yu, D. Baldwin et al., “Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress,” Plant Molecular Biology, vol. 53, no. 3, pp. 383–397, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. G. L. Pinheiro, C. S. Marques, M. D. B. L. Costa et al., “Complete inventory of soybean NAC transcription factors: Sequence conservation and expression analysis uncover their distinct roles in stress response,” Gene, vol. 444, no. 1-2, pp. 10–23, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. N. Xia, G. Zhang, X. Liu et al., “Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses,” Molecular Biology Reports, vol. 37, no. 8, pp. 3703–3712, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Jakoby, B. Weisshaar, W. Dröge-Laser et al., “bZIP transcription factors in Arabidopsis,” Trends in Plant Science, vol. 7, no. 3, pp. 106–111, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. K. Wei, J. Chen, Y. Wang et al., “Genome-wide analysis of bZIP-encoding genes in maize,” DNAResearch, vol. 19, no. 6, pp. 463–476, 2012. View at Publisher · View at Google Scholar
  50. M. A. Schumacher, R. H. Goodman, and R. G. Brennan, “The structure of a CREB bZIP·somatostatin CRE complex reveals the basis for selective dimerization and divalent cation-enhanced DNA binding,” Journal of Biological Chemistry, vol. 275, no. 45, pp. 35242–35247, 2000. View at Publisher · View at Google Scholar · View at Scopus
  51. H. C. Hurst, “Transcription factors 1: bZIP proteins,” Protein Profile, vol. 2, no. 2, pp. 101–168, 1995. View at Google Scholar · View at Scopus
  52. T. Izawa, R. Foster, and N. Chua, “Plant bZIP protein DNA binding specificity,” Journal of Molecular Biology, vol. 230, no. 4, pp. 1131–1144, 1993. View at Publisher · View at Google Scholar · View at Scopus
  53. C. M. J. Pieterse, D. Van Der Does, C. Zamioudis, A. Leon-Reyes, and S. C. M. Van Wees, “Hormonal modulation of plant immunity,” Annual Review of Cell and Developmental Biology, vol. 28, pp. 489–521, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. K. B. Singh, R. C. Foley, and L. Oñate-Sánchez, “Transcription factors in plant defense and stress responses,” Current Opinion in Plant Biology, vol. 5, no. 5, pp. 430–436, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Mateo, P. Mühlenbock, C. Rustérucci et al., “LESION SIMULATING DISEASE 1 is required for acclimation to conditions that promote excess excitation energy,” Plant Physiology, vol. 136, no. 1, pp. 2818–2830, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. C. Liu, B. Mao, S. Ou et al., “OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice,” Plant Molecular Biology, vol. 84, pp. 19–36, 2014. View at Google Scholar
  57. K. Yamasaki, T. Kigawa, M. Seki, K. Shinozaki, and S. Yokoyama, “DNA-binding domains of plant-specific transcription factors: structure, function, and evolution,” Trends in Plant Science, vol. 18, no. 5, pp. 3883–3896, 2013. View at Publisher · View at Google Scholar
  58. H. Wang, J. Hao, X. Chen et al., “Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants,” Plant Molecular Biology, vol. 65, no. 6, pp. 799–815, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. Qiu and D. Yu, “Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis,” Environmental and Experimental Botany, vol. 65, no. 1, pp. 35–47, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. X. Wu, Y. Shiroto, S. Kishitani, Y. Ito, and K. Toriyama, “Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter,” Plant Cell Reports, vol. 28, no. 1, pp. 21–30, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. Q. Zhou, A. Tian, H. Zou et al., “Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants,” Plant Biotechnology Journal, vol. 6, no. 5, pp. 486–503, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. Jiang and M. K. Deyholos, “Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes,” BMC Plant Biology, vol. 6, article 25, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. K. Archana, N. Rama, H. M. Mamrutha, and K. N. Nataraja, “Down-regulation of an abiotic stress related Nicotiana benthamiana WRKY transcription factor induces physiological abnormalities,” Indian Journal of Biotechnology, vol. 8, no. 1, pp. 53–60, 2009. View at Google Scholar · View at Scopus
  64. H. R. B. Pelham, “A regulatory upstream promoter element in the Drosophila Hsp70 heat-shock gene,” Cell, vol. 30, no. 2, pp. 517–528, 1982. View at Publisher · View at Google Scholar · View at Scopus
  65. S. K. Baniwal, K. Bharti, K. Y. Chan et al., “Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors,” Journal of Biosciences, vol. 29, no. 4, pp. 471–487, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. W. Hu, G. Hu, and B. Han, “Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice,” Plant Science, vol. 176, no. 4, pp. 583–590, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. T. J. Schuetz, G. J. Gallo, L. Sheldon, P. Tempst, and R. E. Kingston, “Isolation of a cDNA for HSF2: Evidence for two heat shock factor genes in humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 16, pp. 6911–6915, 1991. View at Google Scholar · View at Scopus
  68. F. F. Damberger, J. G. Pelton, C. J. Harrison, H. C. M. Nelson, and D. E. Wemmer, “Solution structure of the DNA-binding domain of the heat shock transcription factor determined by multidimensional heteronuclear magnetic resonance spectroscopy,” Protein Science, vol. 3, no. 10, pp. 1806–1821, 1994. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Schultheiss, O. Kunert, U. Gase, K. Scharf, L. Nover, and H. Rüterjans, “Solution structure of the DNA-binding domain of the tomato heat-stress transcription factor HSF24,” European Journal of Biochemistry, vol. 236, no. 3, pp. 911–921, 1996. View at Publisher · View at Google Scholar · View at Scopus
  70. M. P. Cicero, S. T. Hubl, C. J. Harrison, O. Littlefield, J. A. Hardy, and H. C. M. Nelson, “The wing in yeast heat shock transcription factor (HSF) DNA-binding domain is required for full activity,” Nucleic Acids Research, vol. 29, no. 8, pp. 1715–1723, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. K. Scharf, T. Berberich, I. Ebersberger, and L. Nover, “The plant heat stress transcription factor (Hsf) family: structure, function and evolution,” Biochimica et Biophysica Acta—Gene Regulatory Mechanisms, vol. 1819, no. 2, pp. 104–119, 2012. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Kotak, M. Port, A. Ganguli, F. Bicker, and P. Von Koskull-Döring, “Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class a Hsfs with AHA and NES motifs essential for activator function and intracellular localization,” The Plant Journal, vol. 39, no. 1, pp. 98–112, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. E. Czarnecka-Verner, S. Pan, T. Salem, and W. B. Gurley, “Plant class B HSFs inhibit transcription and exhibit affinity for TFIIB and TBP,” Plant Molecular Biology, vol. 56, no. 1, pp. 57–75, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. D. Mittal, S. Chakrabarti, A. Sarkar, A. Singh, and A. Grover, “Heat shock factor gene family in rice: genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses,” Plant Physiology and Biochemistry, vol. 47, no. 9, pp. 785–795, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. L. Pirkkala, P. Nykänen, and L. Sistonen, “Roles of the heat shock transcription factors in regulation of the heat shock response and beyond,” FASEB Journal, vol. 15, no. 7, pp. 1118–1131, 2001. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Tessari, E. Salata, A. Ferlin, L. Bartoloni, M. L. Slongo, and C. Foresta, “Characterization of HSFY, a novel AZFb gene on the Y chromosome with a possible role in human spermatogenesis,” Molecular Human Reproduction, vol. 10, no. 4, pp. 253–258, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Nakai, “New aspects in the vertebrate heat stress factor system: HsfA3 and HsfA4,” Cell Stress Chaperones, vol. 4, pp. 86–93, 1999. View at Google Scholar
  78. L. Nover and S. K. Baniwal, “Multiplicity of heat stress transcription factors controlling the complex heat stress response of plants,” in Proceedings of the International Symposium on Environmental Factors. Cellular Stress and Evolution, p. 15, 2006.
  79. J. Tripp, S. K. Mishra, and K. Scharf, “Functional dissection of the cytosolic chaperone network in tomato mesophyll protoplasts,” Plant, Cell and Environment, vol. 32, no. 2, pp. 123–133, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. S. K. Mishra, J. Tripp, S. Winkelhaus et al., “In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato,” Genes and Development, vol. 16, no. 12, pp. 1555–1567, 2002. View at Publisher · View at Google Scholar · View at Scopus
  81. D. Ogawa, K. Yamaguchi, and T. Nishiuchi, “High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth,” Journal of Experimental Botany, vol. 58, no. 12, pp. 3373–3383, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Kumar, W. Busch, H. Birke, B. Kemmerling, T. Nürnberger, and F. Schöffl, “Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis,” Molecular Plant, vol. 2, no. 1, pp. 152–165, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. J. Liu, Q. Qin, Z. Zhang et al., “OsHSF7 gene in rice, Oryza sativa L., encodes a transcription factor that functions as a high temperature receptive and responsive factor,” BMB Reports, vol. 42, no. 1, pp. 16–21, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. G. Chandel, M. Dubey, and R. Meena, “Differential expression of heat shock proteins and heat stress transcription factor genes in rice exposed to different levels of heat stress,” Journal of Plant Biochemistry and Biotechnology, vol. 22, no. 3, pp. 277–285, 2013. View at Publisher · View at Google Scholar · View at Scopus