Table of Contents Author Guidelines Submit a Manuscript
Advances in Agriculture
Volume 2014, Article ID 626434, 5 pages
http://dx.doi.org/10.1155/2014/626434
Research Article

Multivariate Regression Analyses of Yield Associated Traits in Rapeseed (Brassica napus L.) Genotypes

Agriculture and Natural Resources Research Center of Mazandaran, Sari, Iran

Received 5 April 2014; Revised 26 July 2014; Accepted 14 August 2014; Published 24 August 2014

Academic Editor: Nnadozie Oraguzie

Copyright © 2014 Valiollah Rameeh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. G. Khachatourians, A. K. Summer, and P. W. B. Phillips, An Introduction to the History of Canola and the Scientific Basis for Innovation, CABI, London, UK, 2001.
  2. M. J. Mahasi and J. W. Kamundia, “Cluster analysis in rapeseed (Brassica napus L.),” African Journal of Agricultural Research, vol. 2, no. 9, pp. 409–411, 2007. View at Google Scholar
  3. Z. Aytac, G. Kinaci, and E. Kinaci, “Genetic variation, heritability and path analysis of summer rapeseed cultivars,” Journal of Applied and Biological Science, vol. 2, no. 3, pp. 35–39, 2008. View at Google Scholar
  4. M.-J. Ana, K.-S. Ankica, S. Dejana, M. Radovan, and H. Nikola, “Phenotypic and molecular evaluation of genetic diversity of rapeseed (Brassica napus L.) genotypes,” African Journal of Biotechnology, vol. 8, no. 19, pp. 4835–4844, 2009. View at Google Scholar · View at Scopus
  5. I. Ofori, “Correlation and path-coefficient analysis of components of seed yield in bambara groundnut (Vigna subterranea),” Euphytica, vol. 91, no. 1, pp. 103–107, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. B. R. Choudhary and P. Joshi, “Genetic diversity in advanced derivatives of Brassica interspecific hybrids,” Euphytica, vol. 121, no. 1, pp. 1–7, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. A. A. Leilah and S. A. Al-Khateeb, “Yield analysis of canola (Brassica napus L.) using some statistical procedures,” Saudi Journal of Biological Sciences, no. 12, pp. 103–113, 2005. View at Google Scholar
  8. Z. Aytaç and G. Kinaci, “Genetic variability and association studies of some quantitative characters in winter rapeseed (Brassica napus L.),” African Journal of Biotechnology, vol. 8, no. 15, pp. 3547–3554, 2009. View at Google Scholar · View at Scopus
  9. F. A. Khan, S. Ali, A. Shakeel, A. Saeed, and G. Abbas, “Correlation analysis of some quantitative characters in Brassica napus L.,” Journal of Agricultural Research, no. 44, pp. 7–14, 2006. View at Google Scholar
  10. S. Ivanovska, C. Stojkovski, Z. Dimov, A. Marjanovic-Jeromela, M. Jankulovska, and L. J. Jankuloski, “Interrelationship between yield and yield related traits of spring canola (Brassica napus L.) genotypes,” Genetika, vol. 39, pp. 325–332, 2007. View at Google Scholar
  11. D. Basalma, “The correlation and path analysis of yield and yield components of different winter rapeseed (Brassica napus ssp. oleifera L.) cultivars,” Research Journal of Agriculture and Biological Sciences, vol. 4, pp. 120–125, 2008. View at Google Scholar
  12. H. A. Sadat, G. Ali Nematzadeh, N. B. Jelodar, and O. G. Chapi, “Genetic evaluation of yield and yield components at advanced generations in rapeseed (Brassica napus L.),” African Journal of Agricultural Research, vol. 5, no. 15, pp. 1958–1964, 2010. View at Google Scholar · View at Scopus
  13. Y. Semahegn Belete, “Genetic variability, correlation and path analysis studies in Ethiopian mustard (Brassica carinata A. Brun) genotypes,” International Journal of Plant Breeding and Genetics, vol. 5, no. 4, pp. 328–338, 2011. View at Publisher · View at Google Scholar
  14. S. Sharma, Applied Multivariate Techniques, John Wiley & Sons, New York, NY, USA, 1st edition, 1996.
  15. R. Naderi and Y. Emam, “Interrelationships among grain yield and related characters of four oilseed rape (Brassica napus L.) cultivars under drought stress conditions,” Desert, vol. 15, no. 2, pp. 133–138, 2010. View at Google Scholar
  16. M. Singh, S. Ceccarelli, and J. Hamblin, “Estimation of heritability from varietal trials data,” Theoretical and Applied Genetics, vol. 86, no. 4, pp. 437–441, 1993. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Khan, I. Farhatullah, and H. Khallil, “Phenotypic correlation analysis of elite F3:4 Brassica populations for quantitative and qualitative traits,” ARPN, Journal of Agriculture and Biological Sciences, no. 3, pp. 38–42, 2008. View at Google Scholar
  18. V. Rameeh, “Combining ability and factor analysis in F2 diallel crosses of rapeseed varieties,” Plant Breeding and Seed Science, vol. 62, pp. 73–83, 2010. View at Google Scholar
  19. SAS Institute Inc, SAS/STAT User’s Guide, Version 9, Statistical Analysis Institute Inc., Cary, NC, USA, 4th edition, 2004.
  20. N. Sabaghnia, H. Dehghani, B. Alizadeh, and M. Mohghaddam, “Interrelationships between seed yield and 20 related traits of 49 canola (Brassica napus L.) genotypes in non-stressed and water-stressed environments,” Spanish Journal of Agricultural Research, vol. 8, no. 2, pp. 356–370, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Marjanović-Jeromela, R. Marinković, A. Mijić, M. Jankulovska, and Z. Zdunić, “Interrelationship between oil yield and other quantitative traits in rapeseed (Brassica napus L.),” Journal of Central European Agriculture, vol. 8, no. 2, pp. 165–170, 2007. View at Google Scholar · View at Scopus
  22. F. A. Sheikh, A. G. Rather, and S. A. Wani, “Genetic variability and inter-relationship in toria Brassica campestris L. var. toria,” Advances in Plant Sciences, vol. 12, no. 1, pp. 139–143, 1999. View at Google Scholar