Research Article  Open Access
Designing 2D Phononic Crystal Slabs with Transmission Gaps for Solid Angle as well as Frequency Variation
Abstract
Phononic crystals (PCs) can be used as acoustic frequency selective insulators and filters. In a twodimensional (2D) PC, cylindrical scatterers with a common axis direction are located periodically in a host medium. In the present paper, the layer multiplescattering (LMS) computational method for wave propagation through 2D PC slabs is formulated and implemented for general 3D incidentwave directions and polarizations. Extensions are made to slabs with cylindrical scatterers of different types within each layer. As an application, the problem is considered to design such a slab with small sound transmittance within a given frequency band and solid angle region for the direction of the incident plane wave. The design problem, with variable parameters characterizing the scatterer geometry and material, is solved by differential evolution, a global optimization algorithm for efficiently navigating parameter landscapes. The efficacy of the procedure is illustrated by comparison to a direct Monte Carlo method.
1. Introduction
Just as photonic crystals can be used to manipulate light, phononic crystals (PCs) with inclusions in a lattice with single, double, or triple periodicity can be used to manipulate sound [1]. When a sound wave of a certain frequency penetrates the PC, the energy is scattered by the inclusions. According to Bragg’s law, constructive and destructive interference appears in certain directions. It follows that transmission and/or reflection for certain frequencies can be absent (band gaps), even for all angles of incidence (absolute band gaps). The band gaps are ideal and fully developed only in spacefilling PCs. In a PC slab with finite thickness, the “bandgap wavefields” are reduced significantly but they do not vanish throughout the gap. Acoustic frequency selective insulators and filters are possible applications.
Several computational methods have been adapted and developed to study wave propagation through PCs. Two such methods are the purely numerical finitedifference time domain (FDTD) method and the semianalytical layer multiplescattering (LMS) method, which is developed from KorringaKohnRostoker theory [2]. These methods complement each other. Advantages with the LMS method are its computational speed, which makes it useful for forward modeling in connection with extensive optimization computations, and the physical insight it provides. It appears that the LMS method was first developed for the 3D case with spherical scatterers [3, 4], and recent review papers include Sigalas et al. [5] and Sainidou et al. [6].
The LMS method has also been applied to the 2D case with infinite cylindrical scatterers. It is mainly the inplane propagation case that has been considered [7–11], for which one space dimension can be eliminated in the wave equations. Outofplane propagation has been treated by Mei et al. [12] and, for band structure calculations, somewhat earlier by Wilm et al. [13] (using the planewave method) and by Guenneau et al. [14].
In the present paper, basic LMS equations for propagation of plane waves of any direction through a 2D PC slab are first provided in Section 2. The Poisson summation formula and the Graf addition theorem are utilized. As shown in Section 3, different types of scatterers at the same interface can be allowed, which represents an extension as compared to the treatment in [12]. Coupled equation systems are derived for the different scatterer types. For 3D PC slabs, a corresponding extension has recently proved useful for applications to design of anechoic coatings [15].
Applications to design of 2D PC slabs with broad transmission gaps for incident waves of inplane as well as outofplane directions are presented in Section 4. The design problem is equivalent to a nonlinear optimization problem, and differential evolution [16], a global optimization technique from inverse theory, is used. A 2D PC slab example from Mei et al. [12], with lead cylinders in an epoxy host, is revisited. Geometrical and material parameter values are varied to position and widen its band gap.
2. Basic 2D Layer MultipleScattering Computational Method
As in Figure 1, a righthand Cartesian coordinate system is introduced in a fluidsolid medium surrounded by homogeneous halfspaces. The horizontal directions are and . The medium is periodic with period in the direction and uniform in the y direction.
Sound waves with time dependence , to be suppressed in the formulas, are considered, where is the angular frequency. It follows that an incident plane wave with horizontal wavenumber vector will give rise to a linear combination of reflected and transmitted plane waves with displacement vectors
Here, , for a wave of type P,SV,SH, respectively, for a wave in the positive (negative) direction, and
where g belongs to the reciprocal lattice
with running over the integers. Furthermore, is the compressionalwave velocity and are the shearwave velocity . The angular variables of are defined by (2), with a possibly complex . The vectors are defined by , , . It is convenient also to introduce the compressional and shearwave wavenumbers and .
As detailed in [17], for example, and references therein, reflection and transmission matrices , and , can now be introduced, for the discrete set of waves specified by (1)–(3). The mentioned reference concerns the doubly periodic case for a 3D PC, with periodicity in the direction as well, but the R/T matrix formalism is the same. There are three scatterer interfaces in the illustration of Figure 1. Individual matrices can be combined recursively [18, 19]. Layer thicknesses, as well as translations of individual scatterer interfaces in the x direction, are conveniently accounted for by phase shifts of the complex amplitudes of the planewave components.
2.1. Interface with Periodically Distributed Scatterers of a Common Type
Explicit expressions for the matrices are well known for an interface between two homogeneous halfspaces [19]. To handle an interface with periodically distributed scatterers, as one of the three in Figure 1, the following cylindrical vector solutions to the wave equations can be used [12]:
where cylindrical coordinates are used according to , and . The index , and is a real number. Residual wavenumbers , are defined by
The notation , , and , , is used for the two basic cases with as the Bessel function and as the Hankel function , respectively.
For scatterers at
where is the lattice period and runs over the integers, and for an incident plane wave as in (1), the total scattered field can be written as (cf. [3]) where is the component of .
The vector is determined by solving the equation system
where is the appropriate identity matrix, gives the coefficients for expansion of the incident plane wave in regular cylindrical waves , is the lattice translation matrix , and is the transition matrix for an individual scatterer. Specifically, and where gives the coefficients for expansion in regular cylindrical waves of the scattered field from all scatterers except the one at the origin.
The R/T matrices are obtained, finally, by transforming the expansion (9) to plane waves of the type (1). Specifically, (9) can be rewritten as The sign in is given by the sign of .
Explicit expressions for the coefficients in (11) are readily obtained from (9) and (4)–(6) by invoking, for and , the relation
where with Im . The relation (12) is valid for , and it can be verified using the Poisson summation formula.
2.2. Computation of the Expansion Coefficients , the Matrices Ω, and the Matrices T
An incident plane compressional wave , where , can be expanded as
Noting that , this follows readily from the wellknown Bessel function relation .
An incident plane shear wave of SV or SH type can be expanded by a superposition of two cases. The first case, with and , can be expanded as
The second case, with as before and , has the expansion
The lattice translation matrix can be determined by applying, for and , the relation where the last sum is taken over all integers and This relation follows from the Graf addition theorem [20] for Bessel functions. The elements of the lattice translation matrix vanish unless . The remaining elements depend on and through only. Explicitly, Moroz [21] has published a representation of lattice sums in terms of exponentially convergent series, which has been used in the present work for numerical evaluation of the quantities defined in (17).
For a homogeneous cylindrical scatterer, the interior field and the exterior field can be expanded in cylindrical waves and , respectively. An equation system for the matrix elements , which depend on , is then readily obtained from the standard boundary conditions concerning continuity of displacement and traction at the cylinder surface. The scatterer as well as the host medium can be either fluid or solid. Because of the circular symmetry with a cylindrical scatterer, scattering only appears to the same component . Details concerning the case , for which the SV and SH solutions decouple, are given by Mei et al. [9].
3. Different Types of Scatterers at the Same Interface
The LMS method is commonly applied for lattices with identical cylindrical scatterers within the same layer. As shown below, however, different types of scatterers within the same layer can also be accommodated. A similar extension for the restriction to inplane wave propagation is made in Ivansson [22].
An illustration is given in Figure 2. Centered at the same level, at each of the three scatterer interfaces, there are two types of cylindrical scatterers. Each scatterer interface is treated separately. Choosing coordinates appropriately, scatterers of the first type, with transition matrix and scatteredfield expansion coefficients denoted , appear at , for integers . Scatterers of the second type, with transition matrix and scatteredfield expansion coefficients denoted , appear at points in between, that is, . The reciprocal lattice vectors become , where m runs over the integers.
The generalization of the expression (9) for the scattered field becomes
It follows that where, for a scatterer of the first type at , and give the coefficients for expansion in regular cylindrical waves of the scattered field from all other scatterers of the first and the second types, respectively. The vectors and are defined analogously. For a scatterer of the second type at , and thus give the coefficients for expansion in regular cylindrical waves of the scattered field from all other scatterers of the second and the first types, respectively.
With , it follows that and . For a certain matrix , to be determined, and . The equation system for determination of and becomes
In order to form the R/T matrices, incident plane waves with different horizontal wavenumber vectors have to be considered, where belongs to the set providing the reciprocal lattice. Noting that the union of the scatterer positions is a small square lattice with period , the following expression for as a difference of matrices is directly obtained Only those in for which is even are reciprocal vectors for the small lattice with period . Since a lattice translation matrix is periodic in its first argument with period , there will be two groups of with different matrices according to (22). Specifically, pertains to with even , and pertains to = (2π m/d, 0, 0) with odd m.
The transformation of the expansion (19) to plane waves of the type (1) can be done separately for each of the and sums. In the latter case, the translation from the origin causes a sign change for some combinations of incident and scattered reciprocal lattice vectors. Specifically, with and , the double sum corresponding to the one in (11) appears as
4. Designing 2D PC Slabs with a Transmission Gap
It is well known that band gaps can appear when scatterers with a large density are arranged periodically in a host with a small density. A particular 2D PC slab example with lead cylinders in epoxy was considered in Mei et al. [12]. The epoxy parameters were 2540 and 1159.817 m/s for the compressional and shearwave velocities, respectively, and 1.18 kg/dm^{3} for the density. Corresponding lead material parameters were 2160 and 860.568 m/s, and 11.4 kg/dm^{3}. The slab was formed by sixteen layers of lead cylinders, each with a radius of 3.584 mm, with a spacing between cylinder centers of 11.598 mm in the as well as directions, cf. Figure 1 where there are three layers. A band gap centered at about 60 kHz was found. (Dimensionless frequencies and distances were actually used in the paper, but a specialization is made here.)
Figure 3 is a contour plot of the transmittance, that is, time (and space) averaged transmitted energy flux relative to the incident one, up to 120 kHz. The vertical axis is for the angle , where the direction vector of the incident compressional plane wave is (, , ). Inplane and outofplane incidence angles are considered together in Figure 3, where the upper half with concerns incidence in the plane (inplane propagation) and the lower half with concerns incidence in the plane. Only the first Brillouin zone is involved, since when equals the epoxy compressionalwave velocity 2540 m/s, mm, and the frequency is less than kHz. Of course, the band gap from Mei et al. [12], at about 60 kHz, shows up clearly in this kind of plot. One might wonder how the geometrical and/or material parameters of the slab should be modified to achieve a prescribed desired change of the appearance of the gap.
Global optimization methods can be used to design PC slabs with desirable properties. Simulated annealing, genetic algorithms and differential evolution (DE) are three kinds of such methods, that have become popular during the last fifteen years. DE, to be applied here, is related to genetic algorithms, but the parameters are not encoded in bit strings, and genetic operators such as crossover and mutation are replaced by algebraic operators [16].
As a very simple example, to try to position and widen the gap in Figure 3, an objective function for DE minimization is specified as the maximum transmittance in the frequency band 45–65 kHz when the incidence angle is varied between and for the two azimuthal angles (inplane propagation in the plane) and (propagation in the plane). A configuration with cylinders of two alternating sizes is allowed, as depicted in Figure 2. Still, the slab is formed by sixteen layers of cylinders. The following seven parameters are varied within the indicated search space: scatterer compressionalwave velocity [1500 m/s 3000 m/s], scatterer shearwave velocity [650 m/s 1200 m/s], scatterer density [7 kg/dm^{3 } 14 kg/dm^{3}], layer thickness [8 16 mm], the largest scatterer radius [0.225 ≤ 0.4 ], the smallest scatterer radius [0.45 ], the lattice period [8()/3 4 ()]. The layer thickness is the distance between subsequent scatterer interfaces (cf. Figure 2).
Table 1 shows the optimum obtained with DE, along with corresponding parameter values. A reduction of the transmitted field with more than 160 dB is achieved throughout the band 45–65 kHz and throughout the solid angle intervals for , for the direction of incidence. Highvelocity highdensity cylinders seem preferable, since the lead velocities and density are all increased to values close to the upper ends of the corresponding search intervals. In this case, as large as possible values of , , and could in fact have been fixed from the start. Moreover, the cylinders are almost as densely packed horizontally as allowed by the search interval for . Hence, the optimization could in fact have been simplified considerably. With only a few free parameters, a complete search, for example, can be a feasible alternative.

Compared to Figure 3, the contour plot in Figure 4 of the transmittance for the optimized PC slab shows a band gap around 60 kHz that has become significantly wider and also deeper. The allowed increases of , , , and ()/ are certainly essential for producing this effect. Variation of , , and is needed to position the band gap at the desired frequency interval. Although the optimization was performed with the restriction , small transmittance is apparently achieved for all angles ().
It turns out that the transmittance for the optimized PC slab remains small within the 45–65 kHz band for all outofplane incidence angles (an “absolute” band gap). Figure 5 shows the transmittance in the same way as Figure 4, but for changed to and changed to . The upper and lower halves exhibit increased symmetry, since the angles involved are closer to one another.
Apparently, the optimized PC slab has large transmittance below about 30 kHz and there are regions with large transmittance above 80 kHz as well. The band gap with small transmittance extends to higher frequencies, than those in the band 45–65 kHz, for planewave incidence directions with either large or small .
The efficacy of the DE technique can be illustrated by showing the decrease of the maximum transmittance within the specified frequency/angle region as the number of tested parameter settings for the PC slab evolves. Figure 6 shows this decrease for the example from Figure 4. A comparison to the much less efficient MonteCarlo method, with random selection of parameters from the search space, is included. The low efficiency of the MonteCarlo approach shows that the desired PC slabs with small transmittance only appear in a small portion of the search space. For example, only about 0.15% of the random slab selections had a maximum transmittance below −20 dB within the specified frequency/angle region. About 0.01% had a maximum transmittance below −100 dB.
The difference between and in Table 1 is rather small. Optimization was also tried with all cylinders of exactly the same radius, as in Figure 1. The obtained optimum, with cylinders of radius 4.2503 mm and slightly modified values for the other parameters, was almost as good as the one presented in Table 1. The advantages with cylinders of different sizes are expected to be more significant in more complicated filtering cases, involving, for example, more than one frequency band.
5. Conclusions
The layer multiplescattering (LMS) method is a fast semianalytical technique for computing scattering from layers including periodic scatterer lattices. For the 2D case with cylindrical scatterers and any solid angle direction of an incident plane wave, an extension has been made to scatterer lattices with cylindrical scatterers of two different sizes in the same horizontal plane.
Global optimization methods from inverse theory are useful for designing PC slabs with desirable properties. A differential evolution algorithm has been applied here to position and widen an “absolute” band gap for a certain 2D PC slab. Although only limited angle intervals for the direction of incidence were included for the optimization, small transmittance was achieved for all solid angles specifying the direction of the incident wave.
The possibility to include cylindrical scatterers of two different sizes in the same horizontal plane provides an additional degree of freedom that can be useful for PC design purposes. In the presented example, with its specification of objective function and search intervals for the parameters, however, the difference between the optimal cylinder radii was rather small and the improvement only marginal. The additional flexibility is expected to be more important in more complicated filtering applications. For example, specified regions in frequencyangle space with large transmittance could be desired in addition to specified regions with small transmittance.
Acknowledgment
Alexander Moroz kindly provided his Fortran routine for calculation of lattice sums.
References
 T. Miyashita, “Sonic crystals and sonic waveguides,” Measurement Science and Technology, vol. 16, no. 5, pp. R47–R63, 2005. View at: Publisher Site  Google Scholar
 N. Papanikolaou, R. Zeller, and P. H. Dederichs, “Conceptual improvements of the KKR method,” Journal of Physics: Condensed Matter, vol. 14, no. 11, pp. 2799–2823, 2002. View at: Publisher Site  Google Scholar
 I. E. Psarobas, N. Stefanou, and A. Modinos, “Scattering of elastic waves by periodic arrays of spherical bodies,” Physical Review B, vol. 62, no. 1, pp. 278–291, 2000. View at: Google Scholar
 Z. Liu, C. T. Chan, P. Sheng, A. L. Goertzen, and J. H. Page, “Elastic wave scattering by periodic structures of spherical objects: theory and experiment,” Physical Review B, vol. 62, no. 4, pp. 2446–2457, 2000. View at: Google Scholar
 M. Sigalas, M. S. Kushwaha, E. N. Economou, M. Kafesaki, I. E. Psarobas, and W. Steurer, “Classical vibrational modes in phononic lattices: theory and experiment,” Zeitschrift für Kristallographie, vol. 220, no. 910, pp. 765–809, 2005. View at: Publisher Site  Google Scholar
 R. Sainidou, N. Stefanou, I. E. Psarobas, and A. Modinos, “The layer multiplescattering method applied to phononic crystals,” Zeitschrift für Kristallographie, vol. 220, no. 910, pp. 848–858, 2005. View at: Publisher Site  Google Scholar
 S. B. Platts, N. V. Movchan, R. C. McPhedran, and A. B. Movchan, “Twodimensional phononic crystals and scattering of elastic waves by an array of voids,” Proceedings of the Royal Society of London A, vol. 458, no. 2026, pp. 2327–2347, 2002. View at: Publisher Site  Google Scholar
 S. B. Platts, N. V. Movchan, R. C. McPhedran, and A. B. Movchan, “Transmission and polarization of elastic waves in irregular structures,” Transactions of the ASME, vol. 125, no. 1, pp. 2–6, 2003. View at: Publisher Site  Google Scholar
 J. Mei, Z. Liu, J. Shi, and D. Tian, “Theory for elastic wave scattering by a twodimensional periodic array of cylinders: an ideal approach for bandstructure calculations,” Physical Review B, vol. 67, Article ID 245107, 7 pages, 2003. View at: Google Scholar
 C. Qiu, Z. Liu, J. Mei, and M. Ke, “The layer multiplescattering method for calculating transmission coefficients of 2D phononic crystals,” Solid State Communications, vol. 134, no. 11, pp. 765–770, 2005. View at: Publisher Site  Google Scholar
 S. Robert, J.M. Conoir, and H. Franklin, “Propagation of elastic waves through twodimensional lattices of cylindrical empty or waterfilled inclusions in an aluminum matrix,” Ultrasonics, vol. 45, no. 1–4, pp. 178–187, 2006. View at: Publisher Site  Google Scholar
 J. Mei, Z. Liu, and C. Qiu, “Multiplescattering theory for outofplane propagation of elastic waves in twodimensional phononic crystals,” Journal of Physics: Condensed Matter, vol. 17, no. 25, pp. 3735–3757, 2005. View at: Publisher Site  Google Scholar
 M. Wilm, A. Khelif, S. Ballandras, V. Laude, and B. DjafariRouhani, “Outofplane propagation of elastic waves in twodimensional phononic bandgap materials,” Physical Review E, vol. 67, no. 6, Article ID 065602, 4 pages, 2003. View at: Google Scholar
 S. Guenneau, C. G. Poulton, and A. B. Movchan, “Oblique propagation of electromagnetic and elastic waves for an array of cylindrical fibres,” Proceedings of the Royal Society of London A, vol. 459, no. 2037, pp. 2215–2263, 2003. View at: Publisher Site  Google Scholar
 S. M. Ivansson, “Numerical design of Alberich anechoic coatings with superellipsoidal cavities of mixed sizes,” Journal of the Acoustical Society of America, vol. 124, no. 4, pp. 1974–1984, 2008. View at: Publisher Site  Google Scholar
 K. Price, R. Storn, and J. Lampinen, Differential Evolution—A Practical Approach to Global Optimization, Springer, New York, NY, USA, 2005.
 S. M. Ivansson, “Sound absorption by viscoelastic coatings with periodically distributed cavities,” Journal of the Acoustical Society of America, vol. 119, no. 6, pp. 3558–3567, 2006. View at: Publisher Site  Google Scholar
 J. B. Pendry, Low Energy Electron Diffraction, Academic Press, New York, NY, USA, 1974.
 B. L. N. Kennett, Seismic Wave Propagation in Stratified Media, Cambridge University Press, Cambridge, UK, 1983.
 M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1965.
 A. Moroz, “Exponentially convergent lattice sums,” Optics Letters, vol. 26, no. 15, pp. 1119–1121, 2001. View at: Google Scholar
 S. M. Ivansson, “Extended layer multiplescattering and global optimization techniques for 2D phononic crystal insulator design,” in Photonics Research Developments, V. P. Nilsson, Ed., chapter 7, pp. 225–245, Nova, 2008. View at: Google Scholar
Copyright
Copyright © 2009 Sven M. Ivansson. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.