Table of Contents Author Guidelines Submit a Manuscript
Advances in Acoustics and Vibration
Volume 2009, Article ID 512839, 9 pages
http://dx.doi.org/10.1155/2009/512839
Research Article

Study of Ultrasound Transmission through an Immersed Glass Plate in view of Sonochemical Reactor Design Optimisation

1Institut UTINAM-SRS, Université de Franche-Comté, UMR CNRS 6213, 30 avenue de l'Observatoire, 25009 Besançon Cedex, France
2IMASONIC SAS, Z.A. rue des Savourots, 70190 Voray sur l'Ognon, France

Received 17 February 2009; Accepted 6 April 2009

Academic Editor: KM Liew

Copyright © 2009 R. Viennet et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. J. Mason and J. P. Lorimer, Sonochemistry: The Applications and Uses of Ultrasound in Chemistry, John Willey & Sons, New York, NY, USA, 1988.
  2. D. J. Walton and S. S. Phull, “Sonoelectrochemistry,” in Advances in Sonochemistry. Vol. 4, pp. 205–284, JAI Press, London, UK, 1996. View at Google Scholar
  3. M.-L. Doche, J.-Y. Hihn, F. Touyeras, J. P. Lorimer, T. J. Mason, and M. Plattes, “Electrochemical behaviour of zinc in 20 kHz sonicated NaOH electrolytes,” Ultrasonics Sonochemistry, vol. 8, no. 3, pp. 291–298, 2001. View at Publisher · View at Google Scholar
  4. V. Ligier, J. Y. Hihn, M. Wéry, and M. Tachez, “Effects of 20 kHz and 500 kHz ultrasound on the corrosion of zinc precoated steels in [Cl] [SO42] [HCO3] [H2O2] electrolytes,” Journal of Applied Electrochemistry, vol. 31, no. 2, pp. 213–222, 2001. View at Publisher · View at Google Scholar
  5. B. Pollet, J. P. Lorimer, S. S. Phull, and J. Y. Hihn, “Sonoelectrochemical recovery of silver from photographic processing solutions,” Ultrasonics Sonochemistry, vol. 7, no. 2, pp. 69–76, 2000. View at Publisher · View at Google Scholar
  6. F. Touyeras, J.-Y. Hihn, M.-L. Doche, and X. Roizard, “Electroless copper coating of epoxide plates in an ultrasonic field,” Ultrasonics Sonochemistry, vol. 8, no. 3, pp. 285–290. View at Publisher · View at Google Scholar
  7. A. Francony, , Ph.D. thesis, Université de Savoie, Chambéry, France, 1995.
  8. H. Hatano and S. Kanai, “High-frequency ultrasonic cleaning tank utilizing oblique incidence,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 43, no. 4, pp. 531–535, 1996. View at Publisher · View at Google Scholar
  9. J.-Y. Hihn, D. Béréziat, M.-L. Doche et al., “Double-structured ultrasonic high frequency reactor using an optimised slant bottom,” Ultrasonics Sonochemistry, vol. 7, no. 4, pp. 201–205, 2000. View at Publisher · View at Google Scholar
  10. H. Reissner, “Der senkrechte und schräge Durchtritt einer in einem flüssigen Medium erzeugten ebenen Dilatations- Welle durch eine in diesem Medium befindliche planparallele feste Platte,” Helvetica Physica Acta, vol. 11, pp. 140–155, 1938. View at Google Scholar
  11. F. H. Sanders, “Transmission of sound through thin plates,” Canadian Journal of Research, vol. 17, no. 9, pp. 179–193, 1939. View at Google Scholar
  12. R. D. Fay and O. V. Fortier, “Transmission of sound through steel plates immersed in water,” Journal of the Acoustical Society of America, vol. 23, no. 3, pp. 339–346, 1951. View at Publisher · View at Google Scholar
  13. R. Krimholtz, D. A. Leedom, and G. L. Matthaei, “New equivalent circuits for elementary piezoelectric transducers,” Electronics Letters, vol. 6, no. 12, pp. 398–399, 1970. View at Publisher · View at Google Scholar
  14. International standard IEC 1161 First edition 1992-07.