Table of Contents Author Guidelines Submit a Manuscript
Advances in Acoustics and Vibration
Volume 2011, Article ID 407470, 9 pages
http://dx.doi.org/10.1155/2011/407470
Research Article

Analytical Expressions for Frequency and Buckling of Large Amplitude Vibration of Multilayered Composite Beams

School of Mechanical Engineering, Sharif University of Technology, P.O. Box 14588-89694, Tehran, Iran

Received 9 May 2011; Accepted 24 May 2011

Academic Editor: K. M. Liew

Copyright © 2011 R. A. Jafari-Talookolaei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Baghani, R. A. Jafari-Talookolaei, and H. Salarieh, “Large amplitudes free vibrations and post-buckling analysis of unsymmetrically laminated composite beams on nonlinear elastic foundation,” Applied Mathematical Modelling, vol. 35, no. 1, pp. 130–138, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Malekzadeh and A. R. Vosoughi, “DQM large amplitude vibration of composite beams on nonlinear elastic foundations with restrained edges,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 3, pp. 906–915, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. B. P. Patel, M. Ganapathi, and M. Touratier, “Nonlinear free flexural vibrations/post-buckling analysis of laminated orthotropic beams/columns on a two parameter elastic foundation,” Composite Structures, vol. 46, no. 2, pp. 189–196, 1999. View at Google Scholar · View at Scopus
  4. S. A. Emam and A. H. Nayfeh, “Postbuckling and free vibrations of composite beams,” Composite Structures, vol. 88, no. 4, pp. 636–642, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. R. K. Kapania and S. Raciti, “Nonlinear vibrations of unsymmetrically laminated beams,” AIAA Journal, vol. 27, no. 2, pp. 201–210, 1989. View at Google Scholar · View at Scopus
  6. M. Ganapathi, B. P. Patel, J. Saravanan, and M. Touratier, “Application of spline element for large-amplitude free vibrations,” Composites Part B, vol. 29B, no. 1, pp. 1–8, 1998. View at Google Scholar · View at Scopus
  7. M. Kiran, I. Bangera, and K. Chandrashekhara, “Nonlinear vibration of moderately thick laminated beams using finite element method,” Finite Elements in Analysis and Design, vol. 9, no. 4, pp. 321–333, 1991. View at Google Scholar · View at Scopus
  8. A. W. Obst and R. K. Kapania, “Nonlinear static and transient finite element analysis of laminated beams,” Composites Engineering, vol. 2, no. 5–7, pp. 375–389, 1992. View at Google Scholar · View at Scopus
  9. J. R. Banerjee and F. W. Williams, “Exact dynamic stiffness matrix for composite timoshenko beams with applications,” Journal of Sound and Vibration, vol. 194, no. 4, pp. 573–585, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. J. R. Banerjee, “Free vibration of axially loaded composite Timoshenko beams using the dynamic stiffness matrix method,” Computers and Structures, vol. 69, no. 2, pp. 197–208, 1998. View at Google Scholar · View at Scopus
  11. G. V. Rao, K. M. Saheb, and G. R. Janardhan, “Fundamental frequency for large amplitude vibrations of uniform Timoshenko beams with central point concentrated mass using coupled displacement field method,” Journal of Sound and Vibration, vol. 298, no. 1-2, pp. 221–232, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Woinowsky-Krieger, “The effect of an axial force on the vibration of hinged bars,” Journal of Applied Mechanics, vol. 17, pp. 35–36, 1950. View at Google Scholar
  13. L. Azrar, R. Benamar, and R. G. White, “A semi-analytical approach to the non-linear dynamic response problem of S-S and C-C beams at large vibration amplitudes part I: general theory and application to the single mode approach to free and forced vibration analysis,” Journal of Sound and Vibration, vol. 224, no. 2, pp. 183–207, 1999. View at Google Scholar · View at Scopus
  14. M. I. Qaisi, “Application of the harmonic balance principle to the nonlinear free vibration of beams,” Applied Acoustics, vol. 40, no. 2, pp. 141–151, 1993. View at Google Scholar · View at Scopus
  15. G. V. Rao, I. S. Raju, and K. K. Raju, “Nonlinear vibrations of beams considering shear deformation and rotary inertia,” AIAA Journal, vol. 14, no. 5, pp. 685–687, 1976. View at Google Scholar · View at Scopus
  16. S. M. Han, H. Benaroya, and T. Wei, “Dynamics of transversely vibrating beams using four engineering theories,” Journal of Sound and Vibration, vol. 225, no. 5, pp. 935–988, 1999. View at Google Scholar · View at Scopus
  17. G. V. Rao and K. K. Raju, “A numerical integration method to study the large amplitude vibration of slender beams with immovable ends,” Journal of the Institution of Engineers, vol. 83, pp. 42–44, 2002. View at Google Scholar · View at Scopus
  18. E. Chandrasekaran, K. Jayaraman, and S. M. Nazeer, “Effects of symmetric and antisymmetric fiber orientations on the natural frequencies of FRP aircraft panel boards,” Journal of Reinforced Plastics and Composites, vol. 23, no. 8, pp. 831–841, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. R. M. Jones, Mechanics of Composite Materials, McGraw-Hill, NewYork, NY, USA, 1975.
  20. T. A. Weisshaar and B. L. Foist, “Vibration tailoring of advanced composite lifting surfaces,” Journal of Aircraft, vol. 22, no. 2, pp. 141–147, 1985. View at Google Scholar · View at Scopus
  21. S. Liao, Beyond Perturbation—Introduction to the Homotopy Analysis Method, Chapman & Hall/CRC, 2004.