Table of Contents Author Guidelines Submit a Manuscript
Advances in Acoustics and Vibration
Volume 2013 (2013), Article ID 614025, 7 pages
http://dx.doi.org/10.1155/2013/614025
Research Article

Estimation of Acceleration Amplitude of Vehicle by Back Propagation Neural Networks

1Mechanical Engineering Group, Aligudarz Branch, Islamic Azad University, P.O. Box 159, Aligudarz, Iran
2Faculty of Engineering, University of Shahrekord, P.O. Box 115, Shahrekord, Iran

Received 5 April 2013; Accepted 19 May 2013

Academic Editor: Emil Manoach

Copyright © 2013 Mohammad Heidari and Hadi Homaei. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Guclu and K. Gulez, “Neural network control of seat vibrations of a non-linear full vehicle model using PMSM,” Mathematical and Computer Modelling, vol. 47, no. 11-12, pp. 1356–1371, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Li, S. Yang, and W. Guo, “Investigation on chaotic motion in hysteretic non-linear suspension system with multi-frequency excitations,” Mechanics Research Communications, vol. 31, no. 2, pp. 229–236, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. Q. Zhu and M. Ishitobi, “Chaotic vibration of a nonlinear full-vehicle model,” International Journal of Solids and Structures, vol. 43, no. 3-4, pp. 747–759, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Litak, M. Borowiec, M. I. Friswell, and K. Szabelski, “Chaotic vibration of a quarter-car model excited by the road surface profile,” Communications in Nonlinear Science and Numerical Simulation, vol. 13, no. 7, pp. 1373–1383, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Ishihama, H. Masao, and M. Seto, “Vehicle vibration reduction by transfer function phase control on hydraulic engine mounts,” JSME International Journal C, vol. 37, no. 3, pp. 536–541, 1994. View at Google Scholar · View at Scopus
  6. T. Y. Yi and P. E. Nikravesh, “A method of identify vibration characteristics of modified structures for flexible vehicle dynamics,” Proceedings of the Institution of Mechanical Engineers D, vol. 216, no. 1, pp. 55–63, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Liang, D. Zhu, and Y. Cai, “Dynamic analysis of the vehicle-subgrade model of a vertical coupled system,” Journal of Sound and Vibration, vol. 245, no. 1, pp. 79–92, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. D. A. Linkens and H. O. Nyongesa, “Learning systems in intelligent control: an appraisal of fuzzy, neural and genetic algorithm control applications,” IEE-Proceedings of the Control Theory Applications, vol. 143, no. 4, pp. 367–386, 1996. View at Google Scholar
  9. V. Rouillard and M. A. Sek, “Simulation of non-stationary vehicle vibrations,” Proceedings of the Institution of Mechanical Engineers D, vol. 215, no. 10, pp. 1069–1075, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. Ş. Yildirim and I. Uzmay, “Neural network applications to vehicle's vibration analysis,” Mechanism and Machine Theory, vol. 38, no. 1, pp. 27–41, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. Ş. Yildirim and I. Uzmay, “Statistical analysis of vehicles' vibration due to road roughness using Radial Basis artificial Neural Network,” Applied Artificial Intelligence, vol. 15, no. 4, pp. 419–427, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. W. Q. Zhu, Random Vibration, Academic Press, Beijing, China, 1992.
  13. D. E. Newland, An Introduction to Random Vibration, Spectral and Wavelet Analysis, Longman Scientific and Technical Group, England, UK, 3rd edition, 1993.
  14. I. Uzmay, “Investigation of vehicle vibrations due to random excitation by road roughness,” in Proceedings of Second National Machine Design and Production Conference, pp. 159–165, 1986.
  15. H. Zhang, W. Wu, and M. Yao, “Boundedness and convergence of batch back-propagation algorithm with penalty for feedforward neural networks,” Neurocomputing, vol. 89, pp. 141–146, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Shao and G. Zheng, “Convergence analysis of a back-propagation algorithm with adaptive momentum,” Neurocomputing, vol. 74, no. 5, pp. 749–752, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Gao, Y. Kinouchi, K. Ito, and X. Zhao, “Neural networks for event extraction from time series: a back propagation algorithm approach,” Future Generation Computer Systems, vol. 21, no. 7, pp. 1096–1105, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Demuth and M. Beale, Matlab Neural Networks Toolbox, User’s Guide, Copyright 1992–2001, The Math Works, Inc, http://www.mathworks.com.
  19. D. Ballabio and M. Vasighi, “A Matlab toolbox for self organizing maps and supervised neural network learning strategies,” Chemometrics and Intelligent Laboratory Systems, vol. 118, pp. 24–32, 2012. View at Google Scholar