Applied Bionics and Biomechanics
 Journal metrics
Acceptance rate39%
Submission to final decision115 days
Acceptance to publication33 days
CiteScore2.000
Impact Factor1.141

The Biomechanics of Shoulder Movement with Implications for Shoulder Injury in Table Tennis: A Minireview

Read the full article

 Journal profile

Applied Bionics and Biomechanics publishes original research articles as well as review articles that seek to understand the mechanics of biological systems, or that use the functions of living organisms as inspiration for the design of new devices.

 Editor spotlight

Applied Bionics and Biomechanics maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

The Effect of Crank Length Changes from Cycling Rehabilitation on Muscle Behaviors

Background. Many sports and physical activities can result in lower limb injures. Pedaling is an effective exercise for lower extremity rehabilitation, but incorrect technique may cause further damage. To some extent, previous experiments have been susceptible to bias in the sample recruited for the study. Alternatively, methods used to simulation activities can enable parametric studies without the influence of noise. In addition, models can facilitate the study of all muscles in the absence of the effects of fatigue. This study investigated the effects of crank length on muscle behavior during pedaling. Methods. Six muscles (soleus, tibialis anterior, vastus medialis, vastus lateralis, gastrocnemius, and rectus femoris), divided into three groups (ankle muscle group, knee muscle group, and biarticular muscle group), were examined under three cycling crank lengths (100 mm, 125 mm, and 150 mm) in the present study. In addition, the relationship between crank length and muscle biological force was analyzed with the AnyBody Modeling System™, a human simulation modeling software based on the Hill-type model. Findings. Based on inverse kinematic analysis, the results indicate that muscle activity and muscle force decrease in varying degrees with increases in crank length. The maximum and minimum muscular forces were attained in the tibialis anterior and vastus lateralis, respectively. Interpretation. Studying the relationship between muscle and joint behavior with crank length can help rehabilitation and treating joint disorders. This study provides the pedal length distribution areas for patients in the early stages of rehabilitation.

Research Article

Lower-Limb-Assisting Robotic Exoskeleton Reduces Energy Consumption in Healthy Young Persons during Stair Climbing

Many robotic exoskeletons for lower limb assistance aid walking by reducing energy costs. However, investigations examining stair-climbing assistance have remained limited, generally evaluating reduced activation of related muscles. This study sought to investigate how climbing assistance by a robotic exoskeleton affects energy consumption. Ten healthy young participants wearing a robotic exoskeleton that assists flexion and extension of hip and knee joints walked up nine flights of stairs twice at a self-selected speed with and without stair-climbing assistance. Metabolic cost was assessed by measuring oxygen consumption, heart rate, and the time to climb each flight of stairs. Net oxygen cost (NOC) and total heart beats (THB) were used as measures of metabolic cost, accounting for different climbing speeds. Stair-climbing assistance reduced NOC and THB by 9.3% () and 6.9% (), respectively, without affecting climbing speed. Despite lack of individual optimization, assistive joint torque applied to the hip and knee joints reduced metabolic cost and cardiovascular burden of stair climbing in healthy young males. These results may be used to improve methods for stair ascent assistance.

Research Article

Development of Integrated Neural Network Model for Identification of Fake Reviews in E-Commerce Using Multidomain Datasets

Online product reviews play a major role in the success or failure of an E-commerce business. Before procuring products or services, the shoppers usually go through the online reviews posted by previous customers to get recommendations of the details of products and make purchasing decisions. Nevertheless, it is possible to enhance or hamper specific E-business products by posting fake reviews, which can be written by persons called fraudsters. These reviews can cause financial loss to E-commerce businesses and misguide consumers to take the wrong decision to search for alternative products. Thus, developing a fake review detection system is ultimately required for E-commerce business. The proposed methodology has used four standard fake review datasets of multidomains include hotels, restaurants, Yelp, and Amazon. Further, preprocessing methods such as stopword removal, punctuation removal, and tokenization have performed as well as padding sequence method for making the input sequence has fixed length during training, validation, and testing the model. As this methodology uses different sizes of datasets, various input word-embedding matrices of n-gram features of the review’s text are developed and created with help of word-embedding layer that is one component of the proposed model. Convolutional and max-pooling layers of the CNN technique are implemented for dimensionality reduction and feature extraction, respectively. Based on gate mechanisms, the LSTM layer is combined with the CNN technique for learning and handling the contextual information of n-gram features of the review’s text. Finally, a sigmoid activation function as the last layer of the proposed model receives the input sequences from the previous layer and performs binary classification task of review text into fake or truthful. In this paper, the proposed CNN-LSTM model was evaluated in two types of experiments, in-domain and cross-domain experiments. For an in-domain experiment, the model is applied on each dataset individually, while in the case of a cross-domain experiment, all datasets are gathered and put into a single data frame and evaluated entirely. The testing results of the model in-domain experiment datasets were 77%, 85%, 86%, and 87% in the terms of accuracy for restaurant, hotel, Yelp, and Amazon datasets, respectively. Concerning the cross-domain experiment, the proposed model has attained 89% accuracy. Furthermore, comparative analysis of the results of in-domain experiments with existing approaches has been done based on accuracy metric and, it is observed that the proposed model outperformed the compared methods.

Research Article

Effects of Sulcus Vocalis Depth on Phonation in Three-Dimensional Fluid-Structure Interaction Laryngeal Models

Sulcus vocalis is an indentation parallel to the edge of vocal fold, which may extend into the cover and ligament layer of the vocal fold or deeper. The effects of sulcus vocalis depth on phonation and the vocal cord vibrations are investigated in this study. The three-dimensional laryngeal models were established for healthy vocal folds (0 mm) and different types of sulcus vocalis with the typical depth of 1 mm, 2 mm, and 3 mm. These models with fluid-structure interaction (FSI) are computed numerically by sequential coupling method, which includes an immersed boundary method (IBM) for modelling the glottal airflow, a finite-element method (FEM) for modelling vocal fold tissue. The results show that a deeper sulcus vocalis in the cover layer decreases the vibrating frequency of vocal folds and expands the prephonatory glottal half-width which increases the phonation threshold pressure. The larger sulcus vocalis depth makes vocal folds difficult to vibrate and phonate. The effects of sulcus vocalis depth suggest that the feature such as phonation threshold pressure could assist in the detection of healthy vocal folds and different types of sulcus vocalis.

Research Article

The Optimal Adaptive-Based Neurofuzzy Control of the 3-DOF Musculoskeletal System of Human Arm in a 2D Plane

Each individual performs different daily activities such as reaching and lifting with his hand that shows the important role of robots designed to estimate the position of the objects or the muscle forces. Understanding the body’s musculoskeletal system’s learning control mechanism can lead us to develop a robust control technique that can be applied to rehabilitation robotics. The musculoskeletal model of the human arm used in this study is a 3-link robot coupled with 6 muscles which a neurofuzzy controller of TSK type along multicritic agents is used for training and learning fuzzy rules. The adaptive critic agents based on reinforcement learning oversees the controller’s parameters and avoids overtraining. The simulation results show that in both states of with/without optimization, the controller can well track the desired trajectory smoothly and with acceptable accuracy. The magnitude of forces in the optimized model is significantly lower, implying the controller’s correct operation. Also, links take the same trajectory with a lower overall displacement than that of the nonoptimized mode, which is consistent with the hand’s natural motion, seeking the most optimum trajectory.

Research Article

Computational Fluid Dynamics Analysis of Nasal Airway Changes after Treatment with C-Expander

The use of the C-expander is an effective treatment modality for maxillary skeletal deficiencies which can cause ailments and significantly reduce life expectancy in late adolescents and young adults. However, the morphological and dynamic effects on the nasal airway have not been reported. The main goal of this study was to evaluate the nasal airway changes after the implementation of a C-expander. A sample of nine patients (8 females, 1 male, age range from 15 to 29 years) was included. The morphology parameters and nasal airway ventilation parameters of pretreatment and posttreatment were measured. All study data were normally distributed. A paired -test was used to evaluate the changes before and after treatment. After expansion, the mean and standard deviation values of intercanine maxillary width (CMW) and intermolar maxillary width (MMW) increased from  mm and  mm to  mm () and  mm (), respectively. The nasal cavity volume increased from  mm3 to  mm3 (). The nasal pressure drop decreased from  Pa to  Pa (), while the value of the maximum velocity decreased from  m/s to  m/s (). Nasal resistance dropped remarkably from  Pa/ml/s to  Pa/ml/s (). The use of C-expander can effectively broaden the area and volume of the nasal airway, having a positive effect in the reduction of nasal resistance and improvement of nasal airway ventilation. For patients suffering from maxillary width deficiency and respiratory disorders, a C-expander may be an alternative method to treat the disease.

Applied Bionics and Biomechanics
 Journal metrics
Acceptance rate39%
Submission to final decision115 days
Acceptance to publication33 days
CiteScore2.000
Impact Factor1.141
 Submit