Applied Bionics and Biomechanics

Applied Bionics and Biomechanics / 2006 / Article

Open Access

Volume 3 |Article ID 176825 |

M. José H. Erazo Macias, S. Alejandro Vega, "Electromyographic Pattern Analysis and Classification for a Robotic Prosthetic Arm", Applied Bionics and Biomechanics, vol. 3, Article ID 176825, 7 pages, 2006.

Electromyographic Pattern Analysis and Classification for a Robotic Prosthetic Arm


This paper deals with the statistical analysis and pattern classification of electromyographic signals from the biceps of a person with amputation below the humerus. Such signals collected from an amputation simulator are synergistically generated to produce discrete elbow movements. The purpose of this study is to utilise these signals to control an electrically driven prosthetic or orthotic elbow with minimum extra mental effort on the part of the subject. The results show very good separability of classes of movements when a learning pattern classification scheme is used, and a superposition of any composite motion to the three basic primitive motions—humeral rotation in and out, flexion and extension, and pronation and supination. Since no synergy was detected for the wrist movement, different inputs have to be provided for a grip. In addition, the method described is not limited by the location of the electrodes. For amputees with shorter stumps, synergistic signals could be obtained from the shoulder muscles. However, the presentation in this paper is limited to biceps signal classification only.

Copyright © 2006 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

More related articles

 PDF Download Citation Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.