Applied Bionics and Biomechanics

Applied Bionics and Biomechanics / 2007 / Article

Open Access

Volume 4 |Article ID 502679 | https://doi.org/10.1080/11762320701797745

Jorge Rivera-Rovelo, Eduardo Bayro-Corrochano, "Surface Approximation using Growing Self-Organizing Nets and Gradient Information", Applied Bionics and Biomechanics, vol. 4, Article ID 502679, 12 pages, 2007. https://doi.org/10.1080/11762320701797745

Surface Approximation using Growing Self-Organizing Nets and Gradient Information

Abstract

In this paper we show how to improve the performance of two self-organizing neural networks used to approximate the shape of a 2D or 3D object by incorporating gradient information in the adaptation stage. The methods are based on the growing versions of the Kohonen's map and the neural gas network. Also, we show that in the adaptation stage the network utilizes efficient transformations, expressed as versors in the conformal geometric algebra framework, which build the shape of the object independent of its position in space (coordinate free). Our algorithms were tested with several images, including medical images (CT and MR images). We include also some examples for the case of 3D surface estimation.

Copyright © 2007 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views73
Downloads480
Citations

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.