3D upper body pose estimation is a topic greatly studied by the computer vision society because it is useful in a great number of applications, mainly for human robots interactions including communications with companion robots. However there is a challenging problem: the complexity of classical algorithms that increases exponentially with the dimension of the vectors’ state becomes too difficult to handle. To tackle this problem, we propose a new approach that combines several annealing particle filters defined independently for each limb and belief propagation method to add geometrical constraints between individual filters. Experimental results on a real human gestures sequence will show that this combined approach leads to reliable results.