Applied Bionics and Biomechanics

Applied Bionics and Biomechanics / 2012 / Article
Special Issue

Human-Robot Interaction/Interface

View this Special Issue

Open Access

Volume 9 |Article ID 353272 |

G. Severini, S. Conforto, M. Schmid, T. D'Alessio, "A Multivariate Auto-Regressive Method to Estimate Cortico-Muscular Coherence for the Detection of Movement Intent", Applied Bionics and Biomechanics, vol. 9, Article ID 353272, 9 pages, 2012.

A Multivariate Auto-Regressive Method to Estimate Cortico-Muscular Coherence for the Detection of Movement Intent


In this work a time-frequency approach to estimate the Cortico-Muscular Coherence for the detection of the movement intent is presented, assessed on simulated data, and evaluated experimentally during different motor tasks performed by healthy subjects and patients suffering from different types of tremor. Cortico-Muscular Coherence is an index of the coupling of EEG signal in the cortical area with sEMG activity in the frequency domain, and its contributions in the beta band (15–30 Hz) have been associated to the movement intent. Cortico-Muscular Coherence estimation is here achieved by considering a closed-loop representation of the signals under analysis obtained through Multivariate Auto Regressive modeling. Significance levels for Cortico-Muscular Coherence are assessed by means of a surrogate data analysis approach. The detection technique is able to reveal significant Cortico-Muscular Coherence changes in 79% of the experimental trials, with a mean anticipation of 1.35 s with respect to movement onset. Time-frequency estimation of Cortico-Muscular Coherence can provide an insight for the development of a multimodal BCI able to integrate information from the brain activity in the functioning of assistive devices.

Copyright © 2012 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Related articles

No related content is available yet for this article.
 PDF Download Citation Citation
 Order printed copiesOrder

Article of the Year Award: Outstanding research contributions of 2021, as selected by our Chief Editors. Read the winning articles.