Table of Contents Author Guidelines Submit a Manuscript
Advances in Bioinformatics
Volume 2010 (2010), Article ID 268925, 10 pages
Review Article

Systems Biology: The Next Frontier for Bioinformatics

1Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
2Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
3Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
4Australian Centre for Plant Functional Genomics, School of Botany, The University of Melbourne, Parkville, VIC, 3010, Australia

Received 4 June 2010; Accepted 1 November 2010

Academic Editor: Anton Enright

Copyright © 2010 Vladimir A. Likić et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Biochemical systems biology augments more traditional disciplines, such as genomics, biochemistry and molecular biology, by championing (i) mathematical and computational modeling; (ii) the application of traditional engineering practices in the analysis of biochemical systems; and in the past decade increasingly (iii) the use of near-comprehensive data sets derived from ‘omics platform technologies, in particular “downstream” technologies relative to genome sequencing, including transcriptomics, proteomics and metabolomics. The future progress in understanding biological principles will increasingly depend on the development of temporal and spatial analytical techniques that will provide high-resolution data for systems analyses. To date, particularly successful were strategies involving (a) quantitative measurements of cellular components at the mRNA, protein and metabolite levels, as well as in vivo metabolic reaction rates, (b) development of mathematical models that integrate biochemical knowledge with the information generated by high-throughput experiments, and (c) applications to microbial organisms. The inevitable role bioinformatics plays in modern systems biology puts mathematical and computational sciences as an equal partner to analytical and experimental biology. Furthermore, mathematical and computational models are expected to become increasingly prevalent representations of our knowledge about specific biochemical systems.