Table of Contents Author Guidelines Submit a Manuscript
Advances in Civil Engineering
Volume 2010, Article ID 675927, 13 pages
http://dx.doi.org/10.1155/2010/675927
Research Article

A Neural-Wavelet Technique for Damage Identification in the ASCE Benchmark Structure Using Phase II Experimental Data

Department of Civil Engineering, The University of New Mexico, Albuquerque, NM 87131, USA

Received 15 December 2009; Revised 18 March 2010; Accepted 25 May 2010

Academic Editor: Yiqing Qing Ni

Copyright © 2010 Mahmoud M. Reda Taha. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. K. Chang, Ed., Structural Health Monitoring: Current Status and Perspectives, Proceedings of the International Workshop on Structural Health Monitoring, Stanford, Calif, USA, 1997.
  2. D. L. Balageas, Ed., Structural Health Monitoring 2004: Proceedings of the 1st International European Workshop on Structural Health Monitoring, Paris, France, 2002.
  3. C. Boller and W. J. Staszewski, Eds., Structural Health Monitoring 2004: Proceedings of the 2nd International European Workshop on Structural Health Monitoring, University of Sheffield, Munich, Germany, 2004.
  4. A. Güemes, Ed., Structural Health Monitoring 2006: Proceedings of the 2nd International European Workshop on Structural Health Monitoring, Granada, Spain, 2006.
  5. F. K. Chang, Ed., Structural Health Monitoring 2007: Quantification, Validation, and Implementation: Proceedings of the 6th International Workshop on Structural Health Monitoring, Stanford, Calif, USA, 2007.
  6. Los Alamos National Laboratory, “A review of structural health monitoring literature: 1996–2001,” LA-13976-MS, 2004.
  7. E. A. Johnson, H. F. Lam, L. S. Katafygiotis, and J. L. Beck, “A benchmark problem for structural health monitoring and damage detection,” in Proceedings of the 14th Engineering Mechanics Conference ASCE, Austin, Tex, USA, 2000.
  8. E. A. Johnson, H. F. Lam, L. S. Katafygiotis, and J. L. Beck, “Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data,” Journal of Engineering Mechanics, vol. 130, no. 1, pp. 3–15, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. S. J. Dyke, D. Bernal, J. L. Beck, and C. Ventura, “An experimental benchmark problem in structural health monitoring,” in Proceedings of the 3rd International Workshop on Structural Health Monitoring, Stanford, Calif, USA, 2001.
  10. S. J. Dyke, J. M. Caicedo, and E. A. Johnson, “Monitoring of a benchmark structure for damage identification,” in Proceedings of the ASCE Engineering Mechanics Conference, Austin, Tex, USA, 2000.
  11. A. Hera, Z. Hou, and M. Noori, “Wavelet-based approach for ASCE structural health monitoring benchmark studies,” in Proceedings of 3rd International Workshop on Structural Health Monitoring, Stanford, Calif, USA, 2001.
  12. N. Y. Yang, S. Lin, and S. Pan, “Damage detection of a health monitoring benchmark building using Hilbert-Huang spectral analysis,” in Proceedings of International Conference on Advances in Building Technology, pp. 1017–1024, Hong Kong, December 2002.
  13. A. Hera and Z. Hou, “Application of wavelet approach for ASCE structural health monitoring benchmark studies,” Journal of Engineering Mechanics, vol. 130, no. 1, pp. 96–104, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Sun and C. C. Chang, “Structural degradation monitoring using covariance-driven wavelet packet signature,” Structural Health Monitoring, vol. 2, no. 4, pp. 309–325, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. H. F. Lam, L. S. Katafygiotis, and N. C. Mickleborough, “Application of a statistical model updating approach on phase I of the IASC-ASCE structural health monitoring benchmark study,” Journal of Engineering Mechanics, vol. 130, no. 1, pp. 34–48, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. K.-V. Yuen, S. K. Au, and J. L. Beck, “Two-stage structural health monitoring approach for phase I benchmark studies,” Journal of Engineering Mechanics, vol. 130, no. 1, pp. 16–33, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Luş, R. Betti, J. Yu, and M. De Angelis, “Investigation of a system identification methodology in the context of the ASCE benchmark problem,” Journal of Engineering Mechanics, vol. 130, no. 1, pp. 71–84, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. J. M. Caicedo, S. J. Dyke, and E. A. Johnson, “Natural excitation technique and eigensystem realization algorithm for phase I of the IASC-ASCE benchmark problem: simulated data,” Journal of Engineering Mechanics, vol. 130, no. 1, pp. 49–60, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Bernal and B. Gunes, “Flexibility based approach for damage characterization: benchmark application,” Journal of Engineering Mechanics, vol. 130, no. 1, pp. 61–70, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Lin, J. N. Yang, and L. Zhou, “Damage identification of a benchmark building for structural health monitoring,” Smart Materials and Structures, vol. 14, no. 3, pp. S162–S169, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. J. G. Chase, V. Begoc, and L. R. Barroso, “Efficient structural health monitoring for a benchmark structure using adaptive RLS filters,” Computers & Structures, vol. 83, no. 8-9, pp. 639–647, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. J. R. Wu and Q. S. Li, “Structural parameter identification and damage detection for a steel structure using a two-stage finite element model updating method,” Journal of Constructional Steel Research, vol. 62, no. 3, pp. 231–239, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. J. N. Yang and H. Huang, “Sequential non-linear least-square estimation for damage identification of structures with unknown inputs and unknown outputs,” International Journal of Non-Linear Mechanics, vol. 42, no. 5, pp. 789–801, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Mizuno and Y. Fujino, “Data archiving and processing method using wavelet decomposition for structural health monitoring,” in Proceedings of the ASCE Conference on Computing in Civil Engineering, pp. 673–680, Pittsburgh, Pa, USA, 2007.
  25. W. Zhou, L. Mevel, and H. Li, “Stochastic subspace-based structural identification and damage detection—application to the ASCE benchmark structure,” in Proceedings of the 6th International Workshop on Structural Health Monitoring, C. Fu-Kuo, Ed., pp. 645–652, Stanford, Calif, USA, 2007.
  26. Z. Hou and A. Hera, “Progress of phase II study of the ASCE health monitoring benchmark data using wavelet approach,” in Proceedings of the 15th ASCE Engineering Mechanics Conference, Columbia University, New York, NY, USA, 2002.
  27. L. R. Barroso and R. Rodriguez, “Application of the damage index method to phase II of the analytical SHM benchmark problem,” in Proceedings for the ASCE Engineering Mechanics Conference, New York, NY, USA, 2004.
  28. S. Casciati, “Statistical models comparision for damage detection using the ASCE benchmark,” in Proceedings for the 2nd European Workshop on Structural Health Monitoring, C. Boller and W. J. Staszewski, Eds., pp. 695–701, University of Sheffield, Munich, Germany, 2004.
  29. A. Hera and Z. Hou, “Wavelet approach for damage detection using experimental data of ASCE benchmark study,” in Proceedings of the ASCE Engineering Mechanics Conference, Seattle, Wash, USA, 2003.
  30. S. Dincal and A. Raich, “Structural damage detection using frequency response function,” in Proceedings of the 5th International Workshop on Structural Health Monitoring, C. Fu-Kuo, Ed., Stanford, Calif, USA, 2005.
  31. K. K. Nair, A. S. Kiremidjian, and K. H. Law, “Time series-based damage detection and localization algorithm with application to the ASCE benchmark structure,” Journal of Sound and Vibration, vol. 291, no. 1-2, pp. 349–368, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Ching and J. L. Beck, “Two-stage Bayesian structural health monitoring approach for phase II ASCE benchmark studies,” in Proceedings of the IMAC-XXI Conference, Orlando, Fla, USA, 2003.
  33. J. Ching and J. L. Beck, “Bayesian analysis of the phase II IASC-ASCE structural health monitoring experimetnal benchmark data,” Journal of Engineering Mechanics, vol. 130, no. 10, pp. 1233–1244, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Giraldo, J. M. Caicedo, and S. J. Dyke, “Experimental phase of the SHM benchmark studies. Damage detection using NeXT and ERA,” in Proceedings of the 16th ASCE Engineering Mechanics Conference, Seattle, Wash, USA, 2003.
  35. J. P. Lynch, “Damage characterization of the IASC-ASCE structural health monitoring benchmark structure by transfer function pole Migration,” in Proceedings of the ASCE Structures Congress and the Forensic Engineering Symposium, pp. 845–854, New York, NY, USA, April 2005. View at Scopus
  36. J. Liu, X. Wang, S. Yuan, and G. Li, “On Hilbert-Huang transform approach for structural health monitoring,” Journal of Intelligent Material Systems and Structures, vol. 17, no. 8-9, pp. 721–728, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. M. M. McCuskey, M. M. Reda Taha, S. R. Horton, and T. J. Baca, “Identifying damage in the ASCE benchmark structure using a neural-wavelet module,” in Proceedings of the 3rd European Workshop on Structural Health Monitoring, A. Güemes, Ed., pp. 421–429, Granada, Spain, 2006.
  38. M. C. McCuskey, Structural damage classification using optimization of a neural-wavelet module and possibility fusion, M.S. thesis, Department of Civil Engineering, University of New Mexico, Albuquerque, NM, USA, 2007.
  39. E. P. Carden and J. M. W. Brownjohn, “ARMA modelled time-series classification for structural health monitoring of civil infrastructure,” Mechanical Systems and Signal Processing, vol. 22, no. 2, pp. 295–314, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. M. B. Bischop, Neural Networks for Pattern Recognition, Oxford University Press, New York, NY, USA, 1996.
  41. P. Tsou and M. H. H. Shen, “Structural damage detection and identification using neural networks,” AIAA journal, vol. 32, no. 1, pp. 176–183, 1994. View at Google Scholar · View at Scopus
  42. R. S. Sexton, R. E. Dorsey, and J. D. Johnson, “Optimization of neural networks: a comparative analysis of the genetic algorithm and simulated annealing,” European Journal of Operational Research, vol. 114, no. 3, pp. 589–601, 1999. View at Google Scholar · View at Scopus
  43. M. F. Elkordy, K. C. Chang, and G. C. Lee, “A structural damage neural network monitoring system,” Microcomputers in Civil Engineering, vol. 9, no. 2, pp. 83–96, 1994. View at Publisher · View at Google Scholar · View at Scopus
  44. E. Douka, S. Loutridis, and A. Trochidis, “Crack identification in beams using wavelet analysis,” International Journal of Solids and Structures, vol. 40, no. 13-14, pp. 3557–3569, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. M. M. Reda Taha, A. Noureldin, J. L. Lucero, and T. J. Baca, “Wavelet transform for structural health monitoring: a compendium of uses and features,” Structural Health Monitoring, vol. 5, no. 3, pp. 267–295, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. Z. Su and L. Ye, “An intelligent signal processing and pattern recognition technique for defect identification using an active sensor network,” Smart Materials and Structures, vol. 13, no. 4, pp. 957–969, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. H.-F. Lam, K.-V. Yuen, and J. L. Beck, “Structural health monitoring via measured ritz vectors utilizing artificial neural networks,” Computer-Aided Civil and Infrastructure Engineering, vol. 21, no. 4, pp. 232–241, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. K.-V. Yuen and H.-F. Lam, “On the complexity of artificial neural networks for smart structures monitoring,” Engineering Structures, vol. 28, no. 7, pp. 977–984, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, Wiley Interscience, New York, NY, USA, 2001.
  50. L. H. Yam, Y. J. Yan, and J. S. Jiang, “Vibration-based damage detection for composite structures using wavelet transform and neural network identification,” Composite Structures, vol. 60, no. 4, pp. 403–412, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Kim and H. Melhem, “Damage detection of structures by wavelet analysis,” Engineering Structures, vol. 26, no. 3, pp. 347–362, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. Y.-S. Diao, H.-J. Li, and Y. Wang, “A two-step structural damage detection approach based on wavelet packet analysis and neural network,” in International Conference on Machine Learning and Cybernetics, pp. 3128–3133, August 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. X. Jiang and H. Adeli, “Pseudospectra, MUSIC, and dynamic wavelet neural network for damage detection of high-rise buildings,” International Journal for Numerical Methods in Engineering, vol. 71, no. 5, pp. 606–629, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. X. Jiang and S. Mahadevan, “Bayesian probabilistic inference for nonparametric damage detection of structures,” Journal of Engineering Mechanics, vol. 134, no. 10, pp. 820–831, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. X. Jiang, S. Mahadevan, and R. Guratzsch, “Bayesian wavelet methodology for damage detection of thermal protection system panels,” AIAA Journal, vol. 47, no. 4, pp. 942–952, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Sohn, D. W. Allen, K. Worden, and C. R. Farrar, “Structural damage classification using extreme value statistics,” Journal of Dynamic Systems, Measurement and Control, vol. 127, no. 1, pp. 125–132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. E. Altunok, M. M. Reda Taha, and T. J. Ross, “Possibilistic approach for damage detection in structural health monitoring,” Journal of Structural Engineering, vol. 133, no. 9, pp. 1247–1256, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. ASCE Benchmark Group, http://wusceel.cive.wustl.edu/asce.shm/benchmarks.htm.
  59. E. Altunok, M. M. Reda Taha, D. S. Epp, R. L. Mayes, and T. J. Baca, “Damage pattern recognition for structural health monitoring using fuzzy similarity prescription,” Computer-Aided Civil and Infrastructure Engineering, vol. 21, no. 8, pp. 549–560, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. M. M. Reda Taha, A. Noureldin, A. Osman, and N. El-Sheimy, “Introduction to the use of wavelet multiresolution analysis for intelligent structural health monitoring,” Canadian Journal of Civil Engineering, vol. 31, no. 5, pp. 719–731, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. S. G. Mallat, A Wavelet Tour of Signal Processing, New York Academic, New York, NY, USA, 1999.
  62. M. Haase and J. Widjajakusuma, “Damage identification based on ridges and maxima lines of the wavelet transform,” International Journal of Engineering Science, vol. 41, no. 13-14, pp. 1423–1443, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. A. V. Ovanesova and L. E. Suárez, “Applications of wavelet transforms to damage detection in frame structures,” Engineering Structures, vol. 26, no. 1, pp. 39–49, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Horton, M. M. Reda Taha, and T. J. Baca, “A neural-wavelet damage detection module for structural health monitoring,” in Proceedings of 5th International Workshop on Structural Health Monitoring, Stanford, Calif, USA, 2005.
  65. C. R. Farrar and D. A. Jauregui, “Comparative study of damage identification algorithms applied to a bridge: II. Numerical study,” Smart Materials and Structures, vol. 7, no. 5, pp. 720–731, 1998. View at Google Scholar · View at Scopus
  66. J. Li, Y. Zhang, and S. Zhu, “A wavelet-based structural damage assessment approach with progressively downloaded sensor data,” Smart Materials and Structures, vol. 17, no. 1, Article ID 015020, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. G. Vanderplatts, Numerical Optimization Techniques for Engineering Design with Applications, McGraw-Hill, New York, NY, USA, 1984.
  68. R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms, John Wiley & Sons, New York, NY USA, 1998.
  69. S. Toussi and J. T. P. Yao, “Assessment of structural damage using the theory of evidence,” Structural Safety, vol. 1, no. 2, pp. 107–121, 1982. View at Google Scholar · View at Scopus
  70. M. M. Reda Taha and J. Lucero, “Damage identification for structural health monitoring using fuzzy pattern recognition,” Engineering Structures, vol. 27, no. 12, pp. 1774–1783, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Chandrashekhar and R. Ganguli, “Uncertainty handling in structural damage detection using fuzzy logic and probabilistic simulation,” Mechanical Systems and Signal Processing, vol. 23, no. 2, pp. 384–404, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. T. J. Ross, Fuzzy Logic with Engineering Applications, John Wiley & Sons, London, UK, 2004.