Advances in Civil Engineering
 Journal metrics
Acceptance rate41%
Submission to final decision98 days
Acceptance to publication40 days
CiteScore1.100
Impact Factor1.176
 Submit

Global Seismic Fragility Functions for Low-Rise RC Frames with Construction Deficiencies

Read the full article

 Journal profile

Advances in Civil Engineering publishes original research articles as well as review articles in all areas of civil engineering. The journal welcomes submissions across a range of disciplines, and publishes both theoretical and practical studies.

 Editor spotlight

Chief Editor, Professor Vipulanandan, is based at the University of Houston and his current research interests are in geotechnical, materials and geoenvironmental engineering.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Study on Variation of Surface Runoff and Soil Moisture Content in the Subgrade of Permeable Pavement Structure

The self-designed indoor simulated rainfall device was used to rain on five types of pavement structures with 4 types of rainfall intensity (2.5 mm/min, 3.4 mm/min, 4.6 mm/min, and 5.5 mm/min). The effect of rainfall intensity on the surface runoff, the relation between the subgrade soil moisture content changes, and the influence of initial soil water content on rain infiltration rate are studied. The test results show that the surface runoff coefficient of densely asphalted pavement is greater than 90% in drainage pavements and it has little influence on the reducing and hysteresis of the flood peak. The surface runoff coefficient of large-void asphalt pavement (permeable) is less than 40%. Although the large-void asphalt pavement (permeable) can reduce a small amount of surface runoff, it has no obvious effect on the reduction and hysteresis of the flood peak. In semipermeable pavement, with the increasing of the thickness of base (graded gravel), the surface runoff coefficient decreases at different rainfall intensities, parts of the surface runoff are reduced, and the arrival of flood peaks is delayed. In permeable roads, almost no surface runoff occurred. As time continued, the soil moisture content quickly reached a saturated state and presented a stable infiltration situation under the action of gravity and the gradient of soil water suction. As the initial moisture content increases, the initial infiltration rate decreases and the time to reach a stable infiltration rate becomes shorter. The drier the soil, the greater the initial infiltration rate and the higher the soil moisture content after infiltration stabilization. Permeable roads can greatly alleviate the pressure of urban drainage and reduce the risk of storms and floods.

Research Article

Deformation Characterisation and Distress Diagnosis of a Metro Shield Tunnel by Adjacent Constructions

This paper presents a case history of the developmental effect of a large-area excavation, 8 high-rise main buildings, a series of annex constructions, and ground overloaded building demolition on the deformation characteristics of an existing shield tunnel within Guangzhou Metro Line No. 1 in close proximity to the development. The shield tunnel lies in a sandy layer of the typical upper-soft and lower-hard strata in Guangzhou district, and the deformation of the tunnel has been monitored since the tunnel was put into operation. The monitoring results reveal that the adjacent construction induces an excessive tunnel settlement with a maximum of 14.4 mm and an excess tunnel displacement with a maximum of 5.2 mm, which are within the corresponding limitations of the codes for the safe operation of urban rail transit tunnels. While the station expansion project is being conducted beside the tunnels, a series of tunnel distresses, including large-area water seepage, spalling concrete blocks, and segmental cracks, are recorded. Our field monitoring data indicate that the tunnel is subjected to further vertical contraction and horizontal expansion due to the station expansion project, and a maximum tunnel flattening rate of 36.78% is detected. Furthermore, the tunnel linings are studied numerically and theoretically to obtain the limitations of tunnel deformation and discuss why tunnel distresses of water seepage, concrete spalling, and segmental cracking occur. Finally, on the basis of the analyses and discussions above, counteracting corrective measures, including compensation grouting soil strengthening and bonded steel plates, are adopted as exterior and interior strengthening methods, respectively, to eliminate further tunnel distresses and ensure safe operation. The lessons learned and summarized in this study may help prevent similar tunnel distresses from reoccurring in the future.

Research Article

Assessment of the Excavation Damaged Zones in the Surrounding Rock of an Underground Powerhouse under High In Situ Stress Using an Acoustic Velocity Detecting Method

Excavation damaged zones (EDZs) in deeply buried underground powerhouse have become major obstacles to design and support, which potentially threaten safety and stability and increase construction and support costs. In this study, investigations of the EDZs were performed by applying an acoustic velocity detecting method in Houziyan hydropower project, southwest of China. A total of 38 testing boreholes distributed in high sidewalls of the main powerhouse were carried out, and corresponding 153 curves were obtained and analyzed. Then, EDZs were divided into highly damaged zone (HDZ), slightly damaged zone (SDZ), and excavation influence zone (EIZ), respectively. Furthermore, we classified the wave velocity curves into four categories: type I, type II, type III, and type IV. EDZs were qualitatively assessed based on the curve categories; in addition, we used a qualitative assessment method, which mainly involved an index of damage degree named D. The assessment results show that HDZ, but not SDZ, was significantly asymmetrically distributed in the upstream (average depth of 4.1 m) and downstream (average depth of 7.5 m) high sidewalls; in partial areas, depth of HDZ exceeded the length of designed rock bolts, which indicates that rock bolts cannot restrain crack development and EDZs evolution. Generally, EDZs distribution was consistent with deformation and failure phenomena distribution; compared to the field failure phenomena, the assessment results were reliable and reasonable. Finally, EDZs formation mechanism was discussed, and it can be concluded that the relatively large intermediate principal stresses σ2 were a critical driving factor of the EDZs evolution.

Research Article

Primary Investigation on Equivalent Anchoring Method of Jointed Rock Mass Tunnel and Its Engineering Application

Rock bolts, one of the main support structures of the tunnel, can improve the stress state and mechanical properties of the surrounding rocks. The rock bolts are simulated by bar or beam elements in present numerical calculations for most 2D tunnel models. However, the methods of simulating rock bolt in three-dimensional models are rarely studied. Moreover, there are too many rock bolts in the long-span tunnel, which are hardly applied in the 3D numerical model. Therefore, an equivalent anchoring method for bolted rock masses needs to be further investigated. First, the jointed material model is modified to simulate the anisotropic properties of surrounding rock masses. Then, based on the theoretical analysis of rock bolts in reinforcing mechanical properties of the surrounding rock masses, the equivalent anchoring method of the jointed rock mass tunnel is numerically studied. The equivalent anchoring method is applied to the stability analysis of a diversion tunnel in Western China. From the calculation results, it could be found that the reinforcement effect of rock bolts could be equivalently simulated by increasing the mechanical parameter value of surrounding rocks. For the jointed rock mass tunnel, the cohesion and internal friction angle of the surrounding rocks are improved as 1.7 times and 1.2 times of the initial value, which can simulate the reinforcement effect of rock bolts. Comparing with analytical results, the improved internal friction angle is nearly consistent with analytical result. The reinforcement effect of rock bolts is simulated obviously when the mechanical parameters of surrounding rocks are increased simultaneously. The engineering application shows that the equivalent anchoring method can reasonably simulate the effect of rock bolts, which can provide reference for stability analysis of three-dimensional tunnel simulations.

Research Article

Investigation of Anisotropic Permeability and Porosity of CJRM considering Different Confinement Loading Pressures

An innovative method is proposed to prepare artificial columnar jointed rock masses (CJRM) with different columnar dip angles, and laboratory physical model tests are conducted to investigate anisotropic permeability and porosity characteristics of the prepared artificial CJRM. In the physical model experiment, permeability and porosity of artificial CJRM with different columnar dip angles is measured during three times cyclic loading and unloading of confinement pressure. Based on the results of the laboratory model tests, the Equivalent Continuum Media Model was applied to analyse anisotropic permeability of CJRM. The main conclusions are summarized as follows. In the first loading phase of confinement pressure, the impacts of confinement pressure on the anisotropic permeability of artificial CJRM, porosity, and the major and minor principle permeability coefficients (PPCs) are significant, while in the following stages of confinement pressure loading and unloading, the change of them is small, with stable value. Permeability of artificial CJRM gradually increases with rise of columnar dip angle, and the permeability anisotropy of artificial CJRM under low confinement pressure is higher than that under low confinement pressure.

Review Article

Progresses in Synthesis of Polycarboxylate Superplasticizer

The prerequisite to synthesize PCE was to prepare new macromonomers with controlled molecular mass, adjustable hydrophilic-lipophilic groups, long-chain alkyl groups, and large terminal hydroxyl groups as well. Structural modifications in the molecular scale of polycarboxylate superplasticizer (PCE) would lead to changes in properties of dispersion and water retention as well as enhancement in the compatibility of Portland cement and so on. This paper reviewed recent developments from synthetic methods of macromonomers as the initial step of production of PCE, PCE at room and elevated temperatures, and relationships between structure and properties of PCE. Through the analysis of references, it was found that PCE synthesized at room temperature had the same performance with PCE synthesized at elevated temperature in terms of conversion rate and initial dispersion in cement but broader molecular weight distribution. Conclusively, the dispersion of PCE in cement might be explained by multiple theories rather than a single one based on development trends as discussed in this paper.

Advances in Civil Engineering
 Journal metrics
Acceptance rate41%
Submission to final decision98 days
Acceptance to publication40 days
CiteScore1.100
Impact Factor1.176
 Submit

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.