Advances in Civil Engineering
 Journal metrics
Acceptance rate41%
Submission to final decision98 days
Acceptance to publication40 days
CiteScore1.700
Journal Citation Indicator0.430
Impact Factor1.924

Article of the Year 2020

A Comparative Study of Protective Schemes for Shield Tunneling Adjacent to Pile Groups

Read the full article

 Journal profile

Advances in Civil Engineering publishes original research articles as well as review articles in all areas of civil engineering. The journal welcomes submissions across a range of disciplines, and publishes both theoretical and practical studies.

 Editor spotlight

Chief Editor, Professor Vipulanandan, is based at the University of Houston and his current research interests are in geotechnical, materials and geoenvironmental engineering.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Mechanical and Durability Studies on Ficus exasperata Leaf Ash Concrete

This paper reports the effect of snake grass (SG) fibers in Ficus exasperata Leaf Ash (FELA) concrete. Snake grass fibers of percentages 0.5, 1, 1.5, and 2 were used in this investigation. Tests of compressive strength, split tensile strength, and flexural strength and durability studies of salt resistance, sulphate resistance, and impact energy resistance were determined, and the test results are discussed in detail. Test results revealed that FELA ash of 15% replacement in cement showed remarkable binding property. Moreover, incorporation of snake grass fiber in concrete improves the strength, postcracking resistance, and energy absorption. It is also observed that 1.5% snake grass fiber incorporation in concrete exhibited better strength properties and energy absorption property than 0.5% and 1%. Also, beyond 1.5%, there is significant reduction in workability property. Regardless of durability property, the mix containing 1.5% snake grass fiber has shown better resistance against durability when compared with other mixes. It is also observed that penetration of chloride and sulphate ions made slight deterioration at sharp edges. Moreover, test results revealed that applications of FELA concrete with snake grass fiber can be effectively expanded in the construction industry.

Research Article

An Improved Model to Calculate Pullback Force of Trenchless Horizontal Directional Drilling Pipeline

In the pullback operation of horizontal directional drilling pipeline crossing, the existing calculation and prediction models of pullback force are relatively simple. Each pullback force maze greatly simplifies the wellbore trajectory and fails to make a detailed analysis of the pipeline stress and external resistance when the pipeline is pulled back in each characteristic trajectory area. The factors considered are relatively simple. Therefore, it is necessary to improve the calculation method of pullback force. This paper aims to establish an improved model, enhancing the earth pressure calculation method of unloading arch and winch calculation method, and carries out an example calculation of the improved formula. Therefore, it is necessary to study the pullback process of horizontal directional drilling pipeline. Firstly, this paper analyzes the calculation method of pullback force in horizontal directional drilling; studies the calculation formula and principle of common pullback force through examples; obtains the advantages, disadvantages, and applicable scope of different formulas; and improves the calculation model of pullback force and step resistance. The numerical simulation of the step crossing process is carried out, and the variation law of local stress and strain of the pipeline and relevant conclusions are obtained. The results show that the estimates of the winch calculation method are close to the actual pullback load of the project. The earth pressure calculation method of the unloading arch and the winch calculation method are improved, and a more stable and reliable calculation formula is obtained, which provides more valuable calculation data for the actual project. In the process of pullback, the pipeline will encounter step resistance after passing through the soft and hard staggered stratum, which will suddenly increase the increment of pipeline pullback force and lead to engineering accidents. If the pullback load suddenly increases and then decreases, it may encounter similar pipeline collision accidents. At the same time, emergency measures can be taken to prevent the crossing accident and ensure the safe pullback of the pipeline.

Research Article

Effect of Sand Faction Percentage in Soil Mixture towards Soil Support Power for Dam Construction

Knowledge of soil, which is an essential construction material, has great importance for dam construction. The level of density and carrying capacity of the soil is very important and should be taken into consideration in the planning and designing stages of civil construction, considering the soil functions as a means to withstand the load or structure built on it. Stabilization using sand soil material is one of the ways to meet the strength requirements of soil carrying capacity when there is no suitable soil material found in the nearby area. This paper aims to elucidate the physical properties of clay using a mixture of fine sand to reduce the risk of shrinkage when used for dam construction. Several analyses were carried out to find out the effect of the fine sand percentage in the clay mixture to decrease the swelling test value and permeability test of the soil carrying capacity for dam construction. The types of soil tested were silt clays taken from Tritisan subdistrict of East Lampung which were then stabilized using fine sand material from Central Lampung, Indonesia. This research was conducted using a mixture of sand, with percentages of 10%, 20%, 30%, and 40%. Subgrade tests such as CBR and permeability tests were also undertaken to investigate other soil properties from each sample. The results indicate that a higher percentage of sand causes decreasing water content. Thus, the value of the carrying capacity of the soil is increasing. The findings can be used to facilitate the increasing use of clay mixtures with the percentage of fine sand in case suitable clay material cannot be found around dam construction sites. The implications with suggestions for future research are also discussed.

Research Article

Safety Assessment of Ship Collision with Piers under the Protection of Anti-Collision Floating Box Based on BIM Technology

In order to research the force state of the piers subjected to a ship collision under the protection of floating anti-collision facilities, this study uses nonlinear spring connections to simulate the impact of ship damping and incidental water quality in the collision area. BIM technology is used to realize a safety evaluation method for the anti-collision floating box protection when the ship is colliding with piers. Established a BIM-based parametric preprocessing model for ships, piers, and anti-collision facilities, and opened the interface with ABAQUS longitudinally. After realizing the parameter adjustment of the BIM model, the visual parameter adjustment can be realized without destroying the boundary conditions, load conditions, and meshing. Taking a rigid frame bridge as an example, the most disadvantage position of the bridge pier under ship collision is determined by the parameterization method. At the same time, multi-condition analysis was carried out on the ship impacting the pier anti-collision floating box at different angles, different tonnages, and different speeds. Finally, the analysis results are traced back to the BIM model, achieving the unified integration of BIM model information and finite element analysis results and the purpose of visual analysis of any working conditions. The results show that the use of BIM parameterization technology to achieve linkage with the finite element preprocessing model can improve the efficiency of multi-condition sensitivity analysis and achieve the purpose of visual dynamic adjustment. The safety assessment analysis of the pier under the protection of the anti-collision pontoon on the pier under various working conditions shows that the anti-collision pontoon effectively reduces the hazard of the ship colliding with the pier, and the impact force gradually increases with the change from the oblique collision to the frontal collision. The peak impact force increases with the weight of the ship and shows a nonlinear relationship, such that the peak value of impact force increases with the speed increase, and the speed and the peak values of impact force show basically a linear relationship.

Research Article

MEMS Dynamic Characteristics Analysis of Electrostatic Microbeams for Building Structure Monitoring

Building structure health monitoring is essential for modern buildings, sensors related to building structure health monitoring are often made with microelectrostatic cantilever beam (MECB), and the performance of this kind of devices is often affected by instability, which affects the measurement results and accuracy. Therefore, it is necessary to study the nonlinear dynamic characteristics of the MECB in the process of bending and pull-in. In this paper, based on the energy principle and fluid pressure film damping effect, the dynamic equation mathematical model of MECB is established and then the dynamic characteristics of the pull-in and lift-off voltage of the MECB and the harmonic motion characteristics under the bias voltage are obtained, which provides guidance for the design of the electrostatic driving sensor.

Research Article

Experimental Study on Permeability Anisotropy of Unsaturated Compacted Loess

This study investigates the permeability characteristics of unsaturated compacted loess by focusing on the anisotropy parallel and perpendicular to the compaction. Three tests are conducted on compacted loess: permeability test, soil-water characteristic curve test, and scanning electron microscope (SEM) test. Samples are maintained and tested at different dry densities under optimal moisture conditions. Test results showed that the horizontal saturated permeability coefficient of compacted loess was larger than in the vertical direction, showing obvious anisotropy. Based on the saturated permeability coefficient, the permeability coefficient of unsaturated compacted loess can be predicted according to the soil-water characteristic curve fitted using the van Genuchten model combined with the Childs and Collis-Geroge model. The relational formula was established between the unsaturated permeability anisotropy ratio and the matrix suction through introducing a pore connectivity-tortuosity parameter, which represents the relationship between unsaturated permeability anisotropy ratio and matrix suction. The difference of pore characteristics between horizontal and vertical directions of compacted loess is the main reason for the permeability anisotropy.

Advances in Civil Engineering
 Journal metrics
Acceptance rate41%
Submission to final decision98 days
Acceptance to publication40 days
CiteScore1.700
Journal Citation Indicator0.430
Impact Factor1.924
 Submit

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.