Table of Contents Author Guidelines Submit a Manuscript
Advances in Civil Engineering
Volume 2010, Article ID 818597, 13 pages
http://dx.doi.org/10.1155/2010/818597
Review Article

Water and Wastewater Pipe Nondestructive Evaluation and Health Monitoring: A Review

Laboratory for NDE and SHM Studies, Department of Civil and Environmental Engineering, University of Pittsburgh, 3700 O'Hara Street, 942 Benedum Hall, Pittsburgh, PA 15261-2294, USA

Received 15 October 2009; Accepted 23 February 2010

Academic Editor: Jinying Zhu

Copyright © 2010 Piervincenzo Rizzo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. P. Lynch and K. J. Loh, “A summary review of wireless sensors and sensor networks for structural health monitoring,” The Shock and Vibration Digest, vol. 38, no. 2, pp. 91–128, 2006. View at Google Scholar
  2. S. W. Doebling, C. R. Farrar, and M. B. Prime, “A summary review of vibration-based damage identification methods,” Shock and Vibration Digest, vol. 30, no. 2, pp. 91–105, 1998. View at Google Scholar
  3. H. Sohn, C. R. Farrar, F. M. Hemez et al., “A review of structural health monitoring literature: 1996–2001,” Tech. Rep. LA-13976-MS, Los Alamos National Laboratory, Los Alamos, NM, USA, 2004. View at Google Scholar
  4. K. Worden, C. R. Farrar, G. Manson, and G. Park, “The fundamental axioms of structural health monitoring,” Proceedings of the Royal Society A, vol. 463, no. 2082, pp. 1639–1664, 2007. View at Publisher · View at Google Scholar
  5. D. Misiunas, J. Vítkovský, G. Olsson, A. Simpson, and M. Lambert, “Pipeline break detection using pressure transient monitoring,” Journal of Water Resources Planning and Management, vol. 131, no. 4, pp. 316–325, 2005. View at Publisher · View at Google Scholar
  6. D. Misiunas, Failure monitoring and asset condition assessment in water supply systems, Ph.D. dissertation, Lund University, Lund, Sweden, 2005.
  7. US Environmental Protection Agency, “Addressing the challenge through innovation,” 2007, http://www.epa.gov/nrmrl/pubs/600f07015/600f07015.pdf.
  8. “Sewer collapse closes chateau street on north side,” May 2009, http://www.post-gazette.com/pg/09134/970143-100.stm.
  9. “Water main break closes Route 88,” May 2009, http://www.post-gazette.com/pg/09146/972733-100.stm.
  10. http://latimesblogs.latimes.com/lanow/2009/09/coldwater-canyon-could-be-closed-for-3-days-due-to- destructive-water-main-break.html.
  11. Y. Kleiner, B. J. Adams, and J. S. Rogers, “Water distribution network renewal planning,” Journal of Computing in Civil Engineering, vol. 15, no. 1, pp. 15–26, 2001. View at Publisher · View at Google Scholar
  12. J. Makar and N. Chagnon, “Inspecting systems for leaks, pits, and corrosion,” Journal of American Water Works Association, vol. 91, no. 7, pp. 36–46, 1999. View at Google Scholar
  13. D. O'day, “Organizing and analyzing leak and break data for making main replacement decisions,” Journal of American Water Works Association, vol. 74, no. 11, pp. 588–594, 1982. View at Google Scholar
  14. J. Makar, R. Desnoyers, and S. McDonald, “Failure modes and mechanisms in gray cast iron pipe,” in Underground Infrastructure Research: Municipal, Industrial and Environmental Applications, M. Knight and N. Thomson, Eds., pp. 303–310, Swets & Zeitlinger, Lisse, The Netherlands, 2001. View at Google Scholar
  15. D. E. Adams, Health Monitoring of Structural Materials and Components, John Wiley & Sons, London, UK, 2007.
  16. P. J. Shull, Nondestructive Evaluation: Theory, Techniques, and Applications, Marcel Dekker, New York, NY, USA, 2002.
  17. J. L. Rose, Ultrasonic Waves in Solid Media, Cambridge University Press, Cambridge, UK, 1999.
  18. J. D. Achenbach, Wave Propagation in Elastic Solids, North-Holland, New York, NY, USA, 1984.
  19. D. E. Bray and R. K. Stanley, Nondestructive Evaluation. A Tool in Design, Manufacturing, and Service, CRC Press, Boca Raton, Fla, USA, 1997.
  20. Trenchless Technology Network, Underground Mapping, Pipeline Location Technology and Condition Assessment, Infrastructure Engineering and Management Research Centre, The University of Birmingham, 2002.
  21. W. Prosser, “Acoustic emission,” in Nondestructive Evaluation: Theory, Techniques, and Applications, P. J. Shull, Ed., Marcel Dekker, New York, NY, USA, 2002. View at Google Scholar
  22. F. A. Travers, “Acoustic monitoring of prestressed concrete pipe,” Construction and Building Materials, vol. 11, no. 3, pp. 175–187, 1997. View at Google Scholar
  23. M. Shehadeh, J. A. Steel, and R. L. Reuben, “Acoustic emission source location for steel pipe and pipeline applications: the role of arrival time estimation,” Journal of Process Mechanical Engineering, vol. 220, no. 2, pp. 121–133, 2006. View at Publisher · View at Google Scholar
  24. R. Al Wardany, “Condition assessment of prestressed concrete cylindrical water pipes,” in Proceedings of the 60th Annual WCWWA Conference and Trade Show, Regina, Canada, September 2008, NRCC-50562, Protecting Our Water.
  25. E. R. MacClean, US patent 2,573,799, November 1951.
  26. T. R. Schmidt, D. L. Atherton, and S. Sullivan, “Use of one-dimensional skin-effect equations for predicting remote-field characteristics, including wall-thickness versus frequency requirements,” Materials Evaluation, vol. 47, no. 1, pp. 76–79, 1989. View at Google Scholar
  27. http://www.picacorp.com/.
  28. J. Makar and S. Mcdonald, “Assessment of the hydroscope 201TM condition index evaluation of gray cast iron pipe from gatineau,” Tech. Rep. QUEBEC NRC REPORT A-7015.3, National Research Council, Ottawa, Canada, 1996. View at Google Scholar
  29. R. Z. Jackson and R. Skabo, “Nondestructive testing of water mains for physical integrity,” American Water Works Association (AWWA) Research Foundation, 1992, http://www.waterresearchfoundation.org/research/TopicsAndProjects/projectSnapshot.aspx?pn=507.
  30. J. B. Nestleroth and R. J. Davis, “Application of eddy currents induced by permanent magnets for pipeline inspection,” NDT & E International, vol. 40, no. 1, pp. 77–84, 2007. View at Publisher · View at Google Scholar
  31. G. C. Clemena, Short-Pulse Radar Methods in Handbook of Nondestructive Testing of Concrete, V. H. Malhotra and N. J. Carino Ed., CRC Press, Boca Raton, Fla, USA, 2004.
  32. A. J. Bahr, R. Zoughi, and N. Qaddoumi,, “Microwave,” in Nondestructive Evaluation: Theory, Techniques, and Applications, P. J. Shull, Ed., Marcel Dekker, New York, NY, USA, 2002. View at Google Scholar
  33. B. Mergelas and X. Kong, Electromagnetic Inspection of Prestressed Concrete Pressure Pipe, AWWA Research Foundation, Denver, Colo, USA, 2001.
  34. F. H. Donaldson, T. J. Dilego, M. S. Higgins, E. A. Padewski, and J. S. Peluso, “Assessing and managing PCCP water transmission mains—Baltimore County, Maryland—a case study,” in Proceedings of the Pipeline Division Specialty Conference, p. 9, Chicago, Ill, USA, July-August 2006. View at Publisher · View at Google Scholar
  35. F. H. Donaldson, R. S. Morrison, O. Singh, D. Lieu, J. Peluso, and B. Wright, “Baltimore's pilot water main inspection program becomes emergency rehab/replacement project,” in Proceedings of the Pipelines: Advances and Experiences with Trenchless Pipeline Projects, p. 69, 2007. View at Publisher · View at Google Scholar
  36. N. J. Carino, Stress Wave Propagation Methods in Handbook of Nondestructive Testing of Concrete, V. H. Malhotra and N. J. Carino Ed., CRC Press, Boca Raton, Fla, USA, 2004.
  37. M. Dingus, J. Haven, and R. Austin, Nondestructive, Noninvasive Assessment of Underground Pipelines, AWWA Research Foundation, Denver, Colo, USA, 2002.
  38. M. Eiswirth, C. Heske, L. S. Burn, and D. DeSilva, “New methods for water pipeline assessment,” in Proceedings of the 2nd World Water Congress of the International Water Association, Berlin, Germany, October 2001.
  39. B. Karney, D. Khani, M. R. Halfawy, and O. Hunaidi, “A simulation study on using inverse transient analysis for leak detection in water distribution networks,” Tech. Rep. NRCC-50452, 2009. View at Google Scholar
  40. F. C. van der Kleij and M. J. Stephenson, “Acoustic logging—the bristol water experience,” in Proceedings of The IWA Specialised Conference: Leakage Management—A Practical Approach, International Water Association, Lemesos, Cyprus, November 2002.
  41. M. Fantozzi, G. Di Chirico, and F. Tonolini, “Leak inspection on water pipelines by acoustic emission with cross-correlation method,” in Proceedings of the AWWA Annual Conference and Exposition, San Antonio, Tex, USA, June 1993.
  42. H. V. Fuchs and R. Riehle, “Ten years of experience with leak detection by acoustic signal analysis,” Applied Acoustics, vol. 33, no. 1, pp. 1–19, 1991. View at Google Scholar
  43. O. Hunaidi, W. Chu, A. Wang, and W. Guan, “Detecting leaks in plastic pipes,” Journal of American Water Works Association, vol. 92, no. 2, pp. 82–94, 2000. View at Google Scholar
  44. O. Hunaidi, A. Wang, M. Bracken, T. Gambino, and C. Fricke, “Acoustic methods for locating leaks in municipal water pipe networks,” in Proceedings of the International Conference on Water Demand Management, Dead Sea, Jordan, May-June 2004, http://irc.nrc-cnrc.gc.ca/pubs/fulltext/nrcc47062/nrcc47062.pdf.
  45. Y. Gao, M. J. Brennan, P. F. Joseph, J. M. Muggleton, and O. Hunaidi, “A model of the correlation function of leak noise in buried plastic pipes,” Journal of Sound and Vibration, vol. 277, no. 1-2, pp. 133–148, 2004. View at Publisher · View at Google Scholar
  46. http://www.ppic.com/services/sahara.shtml.
  47. Water Environment Research Foundation, October 2009, http://www.werf.org/AM/CustomSource/ Downloads/uGetExecutiveSummary.cfm?FILE=ES-01-CTS-7.pdf&ContentFileID=1960.
  48. J. P. Vítkovský, A. R. Simpson, and M. F. Lambert, “Leak detection and calibration using transients and genetic algorithms,” Journal of Water Resources Planning and Management, vol. 126, no. 4, pp. 262–265, 2000. View at Publisher · View at Google Scholar
  49. J. G. Saldarriaga, D. A. A. Fuentes, and L. F. C. Galvis, “Implementation of the hydraulic transient and steady oscillatory flow with genetic algorithms for leakage detection in real water distribution networks,” in Proceedings of the 8th Annual Water Distribution Systems Analysis Symposium, p. 52, Cincinnati, Ohio, USA, August 2006. View at Publisher · View at Google Scholar
  50. M. Stephens, M. Lambert, A. Simpson, J. Vítkovsky, and J. Nixon, “Field tests for leakage, air pocket, and discrete blockage detection using inverse transient analysis in water distribution pipes,” in Proceedings of the World Water and Environmetal Resources Congress: Critical Transitions in Water and Environmetal Resources Management, G. Sehlke, D. F. Hayes, and D. K. Stevens, Eds., vol. 138–147, pp. 4779–4788, ASCE, 2004.
  51. D. Covas, H. Ramos, A. Young, I. Graham, and C. Maksimovic, “Uncertainties of leak detection by means of hydraulic transients from the lab to the field,” in Proceedings of the International Conference on Water Management for the 21st Century (CCWI '05), vol. 2, pp. 143–148, Exeter, UK, September 2005.
  52. A. F. Colombo, P. Lee, and B. W. Karney, “A selective literature review of transient-based leak detection methods,” Journal of Hydro-Environment Research, vol. 2, no. 4, pp. 212–227, 2009. View at Publisher · View at Google Scholar
  53. P. Mix, Introduction to Nondestructive Testing, A Training Guide, John Wiley & Sons, Hoboken, NJ, USA, 2nd edition, 2005.
  54. J. B. Nestleroth and T. A. Bubenik, “Magnetic flux leakage (MFL) technology for natural gas pipeline inspection,” Tech. Rep., The Gas Research Institute, February 1999, http://www.battelle.org/pipetechnology/mfl/mfl98main.html. View at Google Scholar
  55. S. Mukhopadhyay and G. P. Srivastava, “Characterization of metal loss defects from magnetic flux leakage signals with discrete wavelet transform,” NDT & E International, vol. 33, no. 1, pp. 57–65, 2000. View at Publisher · View at Google Scholar
  56. M. Afzal and S. Udpa, “Advanced signal processing of magnetic flux leakage data obtained from seamless gas pipeline,” NDT & E International, vol. 35, no. 7, pp. 449–457, 2002. View at Publisher · View at Google Scholar
  57. P. C. Porter, “Use of magnetic flux leakage (MFL) for the inspection of pipelines and storage tanks,” in Nondestructive Evaluation of Aging Utilities, vol. 2454 of Proceedings of SPIE, pp. 172–184, Oakland, Calif, USA, May 1995.
  58. Y. Lijan, F. Haiying, and W. Yumei, “Research on intelligent pipeline magnetic flux leakage detector,” in Proceedings of the 10th APCNDT Conference, Technology and Beyond, Brisbane, Australia, September 2001.
  59. R. Bickerstaff, M. Vaughn, and G. Stoker, “Review of Sensor Technologies for In-line Inspection of Natural Gas Pipelines,” http://www.netl.doe.gov/technologies/oil-gas/publications/Status_Assessments/71702.pdf.
  60. A. V. Joshi, L. Udpa, S. Udpa, and A. Tamburrino, “Adaptive wavelets for characterizing magnetic flux leakage signals from pipeline inspection,” IEEE Transactions on Magnetics, vol. 40, no. 10, pp. 3168–3172, 2006. View at Google Scholar
  61. I. G. Vickridge and D. Leontidis, “Sewer surveys,” in Sewers—Rehabilitation and Construction, G. F. Read and I. G. Vickridge, Eds., vol. 1 of Repair and Renovation, pp. 84–102, Arnold London, London, UK, 1997. View at Google Scholar
  62. http://www.ge-energy.com/prod_serv/serv/pipeline/en/insp_srvcs/crack_detection/ultrascan_cd/index.htm.
  63. J. L. Rose, J. J. Ditri, A. Pilarski, K. Rajana, and F. Carr, “A guided wave inspection technique for nuclear steam generator tubing,” NDT & E International, vol. 27, no. 6, pp. 307–310, 1994. View at Google Scholar
  64. J. L. Rose, D. Jiao, and J. Spanner Jr., “Ultrasonic guided wave NDE for piping,” Materials Evaluation, vol. 54, no. 11, pp. 1310–1313, 1996. View at Google Scholar
  65. M. J. S. Lowe, D. N. Alleyne, and P. Cawley, “The mode conversion of a guided wave by a part-circumferential notch in a pipe,” Journal of Applied Mechanics, Transactions, vol. 65, no. 3, pp. 649–656, 1998. View at Google Scholar
  66. D. N. Alleyne, B. Pavlakovic, M. J. S. Lowe, and P. Cawley, “Rapid long-range inspection of chemical plant pipework using guided waves,” Insight, vol. 43, no. 2, pp. 93–96, 2001. View at Google Scholar
  67. R. Thompson, G. Alers, and M. Tennison, “Application of direct electromagnetic Lamb wave generation to gas pipeline inspection,” in Proceedings of the IEEE Ultrasonic Symposium, pp. 91–94, New York, NY, USA, 1971.
  68. W. Mohr and P. Hoeller, “On inspection of thin-walled tubes for transverse and longitudinal flaws by guided ultrasonic waves,” IEEE Transactions on Sonics and Ultrasonics, vol. 23, no. 5, pp. 369–374, 1976. View at Google Scholar
  69. D. N. Alleyne, M. J. S. Lowe, and P. Cawley, “The reflection of guided waves from circumferential notches in pipes,” Journal of Applied Mechanics, Transactions ASME, vol. 65, no. 3, pp. 635–641, 1998. View at Google Scholar
  70. B. Pavlakovic, M. J. S. Lowe, D. Alleyne, and P. Cawley, “DISPERSE: a general purpose program for creating dispersion curves,” in Reviews of Progress in Quantitative Nondestructive Evaluation, D. Thompson and D. Chimenti, Eds., vol. 16, pp. 185–192, Plenum, New York, NY, USA, 1997. View at Google Scholar
  71. A. Marzani, E. Viola, I. Bartoli, F. Lanza di Scalea, and P. Rizzo, “A semi-analytical finite element formulation for modeling stress wave propagation in axisymmetric damped waveguides,” Journal of Sound and Vibration, vol. 318, no. 3, pp. 488–505, 2008. View at Publisher · View at Google Scholar
  72. T. Hayashi, W. J. Song, and J. L. Rose, “Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example,” Ultrasonics, vol. 41, no. 3, pp. 175–183, 2003. View at Publisher · View at Google Scholar
  73. J. N. Barshinger and J. L. Rose, “Guided wave propagation in an elastic hollow cylinder coated with a viscoelastic material,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 51, no. 11, pp. 1547–1556, 2004. View at Publisher · View at Google Scholar
  74. J. Gauthier, V. Mustafa, A. Chabbaz, and D. R. Hay, “EMAT generation of horizontally polarized guided shear waves for ultrasonic pipe inspection,” in Proceedings of the1st Pan American Conference for Nondestructive Testing (PACNDT '98), vol. 4, 1998.
  75. A. Demma, P. Cawley, M. Lowe, and A. G. Roosenbrand, “The reflection of the fundamental torsional mode from cracks and notches in pipes,” Journal of the Acoustical Society of America, vol. 114, no. 2, pp. 611–625, 2003. View at Publisher · View at Google Scholar
  76. V. M. N. Ledesma, E. P. Baruch, A. Demma, and M. J. S. Lowe, “Guided wave testing of an immersed gas pipeline,” Materials Evaluation, vol. 67, no. 2, pp. 102–115, 2009. View at Google Scholar
  77. http://www.guided-ultrasonics.com/.
  78. S. A. Vinogradov, “Magnetostrictive transducer for torsional guided waves in pipes and plates,” Materials Evaluation, vol. 67, no. 3, pp. 333–341, 2009. View at Google Scholar
  79. L.-Y. Sun, X.-D. Yang, and Y.-B. Li, “Research on transducer and frequency of ultrasonic guided waves in urban pipe inspection,” in Proceedings of the 4th IEEE Conference on Industrial Electronics and Applications (ICIEA '09), pp. 2708–2711, 2009. View at Publisher · View at Google Scholar
  80. N. Sarshar, M. R. Halfawy, and J. Hengmeechai, “Video processing techniques for assisted CCTV inspection and condition rating of sewers,” in Proceedings of the Stormwater and Urban Water Systems Modeling Conference, Conceptual Modeling of Urban Water Systems, Monograph no. 17, pp. 129–149, Toronto, Canada, 2008.
  81. “Sewer Rehabilitation,” February 2010, http://www.sewer-rehabilitation.com/.
  82. S. K. Sinha and M. A. Knight, “Intelligent system for condition monitoring of underground pipelines,” Computer-Aided Civil and Infrastructure Engineering, vol. 19, no. 1, pp. 42–53, 2004. View at Publisher · View at Google Scholar
  83. S. Iyer and S. K. Sinha, “Segmentation of pipe images for crack detection in buried sewers,” Computer-Aided Civil and Infrastructure Engineering, vol. 21, no. 6, pp. 395–410, 2006. View at Publisher · View at Google Scholar
  84. B. Teichgräber, J. Stemplewski, H. Althoff, and N. Elkmann, “Remote controlled inspection device for large sewers,” Water Practice & Technology, vol. 1, no. 4, 2006. View at Google Scholar
  85. T. Iseley, D. M. Abraham, and S. Gokhale, “Condition assessment of sewer systems,” in Proceedings of the ASCE Conference on Trenchless Pipeline Projects, pp. 43–51, Boston, Mass, USA, June 1997.
  86. R. Wirahadikusumah, D. M. Abraham, T. Iseley, and R. K. Prasanth, “Assessment technologies for sewer system rehabilitation,” Automation in Construction, vol. 7, no. 4, pp. 259–270, 1998. View at Google Scholar
  87. CEITEC, “Evaluation of SSET: the sewer scanner and evaluation technology,” Tech. Rep. CERF Report 40551, ASCE, New York, NY, USA, 2001. View at Google Scholar
  88. M. Eiswirth, C. Frey et al., “Sewer Assessment by multi-sensor system,” in Proceedings of the 2nd World Water Congress of the International Water Association, Berlin, Germany, 2001.
  89. G. Campbell, K. Rogers, and J. Gilbert, “PIRAT—a system for quantitative sewer pipe assessment,” in Proceedings of the International Conference on Trenchless Construction (No-Dig '95), Dresden, Germany, September 1995.
  90. R. Kirkham, P. D. Kearney, K. J. Rogers, and J. Mashford, “PIRAT—a system for quantitative sewer pipe assessment,” International Journal of Robotics Research, vol. 19, no. 11, pp. 1033–1053, 2000. View at Publisher · View at Google Scholar
  91. D. Marlow, S. Heart, S. Burn et al., “Condition assessment strategies and protocols for water and wastewater utility assets,” Tech. Rep. 03-CTS-20CO, Water Environment Research Foundation, 2007. View at Google Scholar