Table of Contents Author Guidelines Submit a Manuscript
Advances in Civil Engineering
Volume 2010 (2010), Article ID 930796, 13 pages
http://dx.doi.org/10.1155/2010/930796
Research Article

Truly Distributed Optical Fiber Sensors for Structural Health Monitoring: From the Telecommunication Optical Fiber Drawling Tower to Water Leakage Detection in Dikes and Concrete Structure Strain Monitoring

1EDF R&D, 6 quai Watier, 78401 Chatou, France
2EDF CIH, Savoie Technolac, 73370 Le Bourget du Lac, France
3LCPC, 58 bld Lefebvre, 75015 Paris, France
4Andra, 1-7 rue Jean Monnet, 92298 Chatenay-Malabry, France

Received 1 September 2009; Revised 18 January 2010; Accepted 11 February 2010

Academic Editor: Jinying Zhu

Copyright © 2010 Jean-Marie Henault et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Lopez-Higuera, Handbook of Optical Fiber Sensing Technology, John Wiley & Sons, New York, NY, USA, 2002.
  2. A. Rogers, “Distributed optical-fiber sensing,” Measurement Science Technology, vol. 10, no. 8, pp. 75–99, 1999. View at Google Scholar
  3. S. Delépine-Lesoille, E. Merliot, and Y. Gautier, “Optical fiber strain sensors for use in civil engineering: state-of-the-art, industrial applications and outlook,” BLPC no. 272, October-November 2008.
  4. J. M. Ko and Y. Q. Ni, “Technology developments in structural health monitoring of large-scale bridges,” Engineering Structures, vol. 27, no. 12, pp. 1715–1725, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Beller, “OTDRs and backscatter measurements,” in Fiber Optic Test and Measurement, D. Derickson, Ed., chapter 11, Prentice-Hall, Upper Saddle River, NJ, USA, 1998. View at Google Scholar
  6. D. Garus, K. Krebber, F. Schliep, and T. Gogolla, “Distributed sensing technique based on Brillouin optical-fiber frequency-domain analysis,” Optics Letters, vol. 21, no. 17, pp. 1402–1404, 1996. View at Google Scholar · View at Scopus
  7. M. Froggatt and J. Moore, “High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter,” Applied Optics, vol. 37, no. 10, 1998. View at Google Scholar
  8. K. T. Wan and C. K. Y. Leung, “Fiber optic sensor for the monitoring of mixed mode cracks in structures,” Sensors and Actuators A, vol. 135, no. 2, pp. 370–380, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. A. J. Rogers, “Polarization optical time domain reflectometry: a new technique for the measurement of field distribution,” Applied Optics, vol. 20, no. 6, pp. 1060–1074, 1981. View at Google Scholar
  10. Z. Liu and A. K. Kim, “Review of recent developments in fire detection technologies,” Journal of Fire Protection Engineering, vol. 13, no. 2, pp. 129–151, 2003. View at Google Scholar · View at Scopus
  11. S. Großwig, A. Graupner, E. Hurtig, K. Kühn, and A. Trostel, “Distributed fiber optical temperature sensing technique—available tool for monitoring task,” in Proceedings of the 8th International Symposium on Temperature and Thermal Measurements in Industry and Science, June 2001.
  12. G. P. Agrawal, Nonlinear Fiber Optics, Academic, New York, NY, USA, 3rd edition, 2001.
  13. M. Nikles, L. Thevenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Optics Letters, vol. 21, no. 10, pp. 758–760, 1996. View at Google Scholar · View at Scopus
  14. D. Inaudi and B. Glisic, “Distributed fiber-optic sensing for long-range monitoring of pipelines,” in Proceedings of the 3rd International Conference on Structural Health Monitoring of Intelligent Infrastructure, Vancouver, Canada, 2007.
  15. Qualification guide FD CEN/TR 14748, “Non-destructive testing—methodology for qualification of non-destructive tests,” 2005. View at Google Scholar
  16. O. Kappelmeyer, “The use of near surface temperature measurements for discovering anomalies due to causes at depths,” Geophysical Prospecting, vol. 5, no. 3, pp. 239–258, 1957. View at Google Scholar
  17. J.-J. Fry, “Détection de fuite sur les digues par acquisition de profils de température le long d'une fiber optique,” in Sécurité des Digues Fluviales et de Navigation, Congrès Français des Grands Barrages, Orléans, France, November 2004.
  18. J.-M. Henault and S. Blairon, “Exemple d'application de capteurs à fibre optique—détection de fuites dans les digues en terre par thermométrie à fiber optique,” in Colloque Contrôle et Mesures Optiques pour L'Industrie (CMOI '06), Arcachon, France, 2006.
  19. ISO/IEC Guide 99, “International vocabulary of metrology—basic and general concepts and associated terms (VIM),” 2007. View at Google Scholar
  20. S. Blairon and J.-M. Henault, “Evaluation d'interrogateurs à fibre optique pour la mesure de température,” in Proceedings of the 14th International Congress of Metrology, Paris, France, 2009.
  21. C. Guidoux, Y.-H. Faure, O. Artières et al., “Measurement results on full scale field experiment using optical fibre detection methods,” Wasser Wirtschaft, vol. 97, no. 10, pp. 66–68, 2007. View at Google Scholar
  22. P. Cunat, Y.-L. Beck, J.-J. Fry, J.-R. Courivaud, and J.-P. Fabre, “Leakage detection based on temperature measurement with fiber optic: methods and results,” in Colloque HYDRO, Lyon, France, 2009.
  23. A. A. Khan, V. Vrabie, J. I. Mars, A. Girard, and G. D'Urso, “A source separation technique for processing of thermometric data from fiber-optic DTS measurements for water leakage identification in dikes,” IEEE Sensors Journal, vol. 8, no. 7, pp. 1118–1129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. V. Lanticq, E. Bourgeois, P. Magnien et al., “Soil-embedded optical fiber sensing cable interrogated by Brillouin optical time-domain reflectometry (B-OTDR) and optical frequency-domain reflectometry (OFDR) for embedded cavity detection and sinkhole warning system,” Measurement Science and Technology, vol. 20, no. 3, 2009. View at Publisher · View at Google Scholar
  25. M. Kihara, K. Hiramatsu, M. Shima, and S. Ikeda, “Distributed optical fiber strain sensor for detecting river embankment collapse,” IEICE Transactions on Electronics, vol. E85-C, no. 4, pp. 952–960, 2002. View at Google Scholar · View at Scopus
  26. S. Delépine-Lesoille, E. Merliot, C. Boulay, L. Quétel, M. Delaveau, and A. Courteville, “Quasi-distributed optical fibre extensometers for continuous embedding into concrete: design and realization,” Smart Materials and Structures, vol. 15, no. 4, pp. 931–938, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Delépine-Lesoille, E. Merliot, Y. Gautier, L. Quétel, M. Delaveau, and A. Courteville, “Multiplexed long-base flexible optical fiber extensometers and temperature bragg sensors interrogated by low-coherence interferometry,” IEEE Sensors Journal, vol. 8, no. 7, pp. 1145–1151, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. V. Lanticq, M. Quiertant, E. Merliot, and S. Delépine-Lesoille, “Brillouin sensing cable: design and experimental validation,” IEEE Sensors Journal, vol. 8, no. 7, pp. 1194–1201, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Zou, X. Bao, Y. Wan, and L. Chen, “Coherent probe-pump-based Brillouin sensor for centimeter-crack detection,” Optics Letters, vol. 30, no. 4, pp. 370–372, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Transactions on Electronics, vol. E83-C, no. 3, pp. 405–411, 2000. View at Google Scholar
  31. A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-pulse Brillouin optical time-domain sensor with 20-mm spatial resolution,” Journal of Lightwave Technology, vol. 25, no. 1, pp. 381–386, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Thévenaz and S. Foaleng Mafang, “Distributed fiber sensing using Brillouin echoes,” in 19th International Conference on Optical Fibre Sensors, vol. 7004 of Proceedings of SPIE, Perth, Western Australia, April 2008, 70043N. View at Publisher · View at Google Scholar
  33. N. Honda, M. Inoue, N. Araki, and Y. Azuma, “New optical fiber line testing system function for highly accurate facility location using Brillouin frequency shift assigned optical fiber,” in Proceedings of the Optical Fiber Communication Conference, Optical Society of America, 2009, paper no. OWU3.
  34. P. C. Wait and T. P. Newson, “Landau Placzek ratio applied to distributed fibre sensing,” Optics Communications, vol. 122, no. 4–6, pp. 141–146, 1996. View at Google Scholar · View at Scopus
  35. C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” IEEE Photonics Technology Letters, vol. 13, no. 10, pp. 1094–1096, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Zou, X. Bao, V. Afshar, and L. Chen, “Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber,” Optics Letters, vol. 29, no. 13, pp. 1485–1487, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Froggatt, D. Gifford, S. Kreger, M. Wolfe, and B. Soller, “Distributed strain and temperature discrimination in unaltered polarization maintaining fiber,” in Proceedings of the 18th Optical Fiber Sensors Conference, Optical Society of America, Cancun, Mexico, 2006, paper no. ThC5.
  38. J.-P. Dubois, S. Delépine-Lesoille, V.-H. Tran et al., “Raman versus Brillouin optical fiber distributed temperature sensing: an outdoor comparison,” in Proceedings of the 4th International Conference on Structural Health Monitoring on Intelligent Infrastructure (SHMII '09), Zurich, Switzerland, 2009.
  39. C. Lee, K. Suh, and T. Landry, “The implementation of self calibration techniques in Raman backscatter based fiber optic distributed temperature system (DTS) technology,” in Proceedings of the Transmission and Distribution Conference and Exposition, pp. 1–6, 2008.