Table of Contents Author Guidelines Submit a Manuscript
Advances in Civil Engineering
Volume 2011, Article ID 275270, 17 pages
http://dx.doi.org/10.1155/2011/275270
Research Article

Nonparametric Monitoring for Geotechnical Structures Subject to Long-Term Environmental Change

Civil, Environmental, and Construction Engineering Programs, College of Engineering and Computer Science, University of Central Florida, Orlando, FL, USA

Received 23 May 2011; Accepted 1 August 2011

Academic Editor: Devendra Narain Singh

Copyright © 2011 Hae-Bum Yun and Lakshmi N. Reddi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. NAE, “Grand challenges for engineering,” 2011, http://www.engineeringchallenges.org/.
  2. ASCE, “ASCE report cards for americas infrastructure,” Tech. Rep., American Society of Civil Engineers, Washington, DC, USA, 2009. View at Google Scholar
  3. USGS, The U.S. Geological Survey Landslide Hazards Program 5-Year Plan (2006–2010), Reportno, U.S. Geological Survey, Washington, DC, USA, 2009.
  4. H.-B. Yun, S. F. Masri, J.-S. Lee, and L. N. Reddi, “Long-term monitoring of a retainingwall using non-parametric identification methods,” submitted to Journal of Geotechnical and Geoenvironmental Engineering.
  5. H.-S. Yu, Plasticity and Geotechnics, Springer, New York, NY, USA, 2006.
  6. A. Schofield and C. P. Wroth, Critical State Soil Mechanics, McGraw-Hill, London, UK, 1968.
  7. K. H. Roscoe and J. B. Burland, “On the generalized stress-strain behavior of “Wet” clay,” in Engineering Plasticity, pp. 535–609, Cambridge University Press, Cambridge, UK, 1968. View at Google Scholar
  8. H. I. Ling, L. Callisto, D. Leshchinsky, and J. Koseki, Soil Stress-Strain Behavior: Measurement, Modeling and Analysis, Springer, Dordrecht, The Netherlands, 2007.
  9. P.-Y. Hicher and J.-F. Shao, Constitutive Modeling of Soils and Rocks, Wiley, Hoboken, NJ, USA, 2008.
  10. H. R. Thomas and Y. He, “Analysis of coupled heat, moisture and air transfer in a deformable unsaturated soil,” Geotechnique, vol. 45, no. 4, pp. 677–689, 1995. View at Google Scholar
  11. H. R. Thomas, Y. He, M. R. Sansom, and C. L. W. Li, “On the development of a model of the thermo-mechanical-hydraulic behaviour of unsaturated soils,” Engineering Geology, vol. 41, no. 1-4, pp. 197–218, 1996. View at Google Scholar
  12. M. Cervera, R. Codina, and M. Galindo, “On the computational efficiency and implementation of block-iterative algorithms for nonlinear coupled problems,” Engineering Computations, vol. 13, no. 6, pp. 4–30, 1996. View at Google Scholar · View at Scopus
  13. W. Xicheng and B. A. Schrefler, “A multi-frontal parallel algorithm for coupled thermo-hydro-mechanical analysis of deforming porous media,” International Journal for Numerical Methods in Engineering, vol. 43, no. 6, pp. 1069–1083, 1998. View at Publisher · View at Google Scholar
  14. H. R. Thomas, H. T. Yang, and Y. He, “Sub-structure based parallel solution of coupled thermo-hydro-mechanical modelling of unsaturated soil,” Engineering Computations, vol. 16, no. 4, pp. 428–442, 1999. View at Google Scholar
  15. H. R. Thomas and Y. He, “A coupled heat-moisture transfer theory for deformable unsaturated soil and its algorithmic implementation,” International Journal for Numerical Methods in Engineering, vol. 40, no. 18, pp. 3421–3441, 1997. View at Google Scholar
  16. H. R. Thomas and P. J. Cleall, “Inclusion of expansive clay behaviour in coupled thermo hydraulic mechanical models,” Engineering Geology, vol. 54, no. 1-2, pp. 93–108, 1999. View at Publisher · View at Google Scholar
  17. H. R. Thomas and H. Missoum, “Three-dimensional coupled heat, moisture, and air transfer in a deformable unsaturated soil,” International Journal for Numerical Methods in Engineering, vol. 44, no. 7, pp. 919–943, 1999. View at Publisher · View at Google Scholar
  18. I. Masters, W. K. S. Pao, and R. W. Lewis, “Coupling temperature to a double-porosity model of deformable porous media,” International Journal for Numerical Methods in Engineering, vol. 49, no. 3, pp. 421–438, 2000. View at Publisher · View at Google Scholar
  19. P. Nithiarasu, K. S. Sujatha, K. Ravindran, T. Sundararajan, and K. N. Seetharamu, “Non-Darcy natural convection in a hydrodynamically and thermally anisotropic porous medium,” Computer Methods in Applied Mechanics and Engineering, vol. 188, no. 1-3, pp. 413–430, 2000. View at Publisher · View at Google Scholar
  20. R. W. Zimmerman, “Coupling in poroelasticity and thermoelasticity,” International Journal of Rock Mechanics and Mining Sciences, vol. 37, no. 1-2, pp. 79–87, 2000. View at Google Scholar
  21. D. Gawin and B. A. Schrefler, “Thermo-hydro-mechanical analysis of partially saturated porous materials,” Engineering Computations, vol. 13, no. 7, pp. 113–143, 1996. View at Google Scholar
  22. M. J. Setzer, “Micro-ice-lens formation in porous solid,” Journal of Colloid and Interface Science, vol. 243, no. 1, pp. 193–201, 2001. View at Publisher · View at Google Scholar
  23. N. Li, F. Chen, B. Su, and G. Cheng, “Theoretical frame of the saturated freezing soil,” Cold Regions Science and Technology, vol. 35, no. 2, pp. 73–80, 2002. View at Publisher · View at Google Scholar
  24. F. Talamucci, “Freezing processes in porous media: formation of ice lenses, swelling of the soil,” Mathematical and Computer Modelling, vol. 37, no. 5-6, pp. 595–602, 2003. View at Google Scholar
  25. J. G. Wang, C. F. Leung, and Y. K. Chow, “Numerical solutions for flow in porous media,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 27, no. 7, pp. 565–583, 2003. View at Publisher · View at Google Scholar
  26. A. W. Rempel, J. S. Wettlaufer, and M. G. Worster, “Premelting dynamics in a continuum model of frost heave,” Journal of Fluid Mechanics, no. 498, pp. 227–244, 2004. View at Publisher · View at Google Scholar
  27. R. D. Miller, “Freezing and heaving of saturated and unsaturated soil,” Highway Research Record, vol. 393, pp. 1–11, 1972. View at Google Scholar
  28. P. Francisco, J. P. Villeneuve, and J. Stein, “Simulation and analysis of frost heaving in subsoils and granular fills of roads,” Cold Regions Science and Technology, vol. 25, no. 2, pp. 89–99, 1997. View at Google Scholar
  29. G. P. Newman and G. W. Wilson, “Heat and mass transfer in unsaturated soils during freezing,” Canadian Geotechnical Journal, vol. 34, no. 1, pp. 63–70, 1997. View at Google Scholar
  30. A. P. S. Selvaduraia, J. Hua, and I. Konuk, “Computational modelling of frost heave inducedsoil–pipeline interaction: I. Modelling of frost heave,” Elsevier Cold Regions Science and Technology, vol. 29, no. 3, pp. 215–228, 1999. View at Google Scholar
  31. Y. M. Lai, Z. W. Wu, S. Y. Lui, and X. J. Den, “Non-linear analysis for the semicoupledproblem of temperature, seepage, and stress fields in cold region retaining walls,” Journal of Thermal Stresses, vol. 24, pp. 1199–1216, 2001. View at Google Scholar
  32. Y. Lai, S. Liu, Z. Wu, Y. Wu, and J. M. Konrad, “Numerical simulation for the coupled problem of temperature and seepage fields in cold region dams,” Journal of Hydraulic Research, vol. 40, no. 5, pp. 631–635, 2002. View at Google Scholar
  33. L. Yuanming, Z. Xuefu, X. Jianzhang, Z. Shujuan, and L. Zhiqiang, “Nonlinear analysis for frost-heaving force of land bridges on QING-TIBET railway in cold regions,” Journal of Thermal Stresses, vol. 28, no. 3, pp. 317–331, 2005. View at Publisher · View at Google Scholar
  34. J. M. Konrad, “Prediction of freezing-induced movements for an underground construction project in Japan,” Canadian Geotechnical Journal, vol. 39, no. 6, pp. 1231–1242, 2002. View at Publisher · View at Google Scholar
  35. P. S. K. Ooi, M. P. Walker, and J. D. Smith, “Performance of a single-propped wall during excavation and during freezing of the retained soil,” Computers and Geotechnics, vol. 29, no. 5, pp. 387–409, 2002. View at Publisher · View at Google Scholar
  36. S. A. Kudryavtsev, “Numerical modeling of the freezing, frost heaving, and thawing of soils,” Soil Mechanics and Foundation Engineering, vol. 41, no. 5, pp. 177–184, 2004. View at Publisher · View at Google Scholar
  37. W. K. Song and J. W. Rhee, “Analysis of underground pipelines subjected to frost heaving forces,” Key Engineering Materials, vol. 297-300, pp. 1241–1250, 2005. View at Google Scholar
  38. P. Yang, J.-M. Ke, J. G. Wang, Y. K. Chow, and F.-B. Zhu, “Numerical simulation of frostheave with coupled water freezing, temperature and stress fields in tunnel excavation,” Computer and Geotechnics, vol. 33, pp. 330–340, 2006. View at Google Scholar
  39. L. Jing, “A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering,” International Journal of Rock Mechanics and Mining Sciences, vol. 40, no. 3, pp. 283–353, 2003. View at Publisher · View at Google Scholar
  40. C. A. Troendle and J. O. Reuss, “Effect of clear cutting on snow accumulation and water outflow at Fraser, Colorado,” Hydrology and Earth System Sciences, vol. 1, no. 2, pp. 325–332, 1997. View at Google Scholar
  41. P. D'Odorico, L. Ridolfi, A. Porporato, and I. Rodriguez-Iturbe, “Preferential states of seasonal soil moisture: the impact of climate fluctuations,” Water Resources Research, vol. 36, no. 8, pp. 2209–2219, 2000. View at Google Scholar
  42. A. Longobardi, “Observing soil moisture temporal variability under fluctuating climatic conditions,” Hydrology and Earth System Sciences Discussions, vol. 5, no. 2, pp. 935–969, 2008. View at Google Scholar
  43. B. A. Schrefler, “Computer modelling in environmental geomechanics,” Computers and Structures, vol. 79, no. 22-25, pp. 2209–2223, 2001. View at Publisher · View at Google Scholar
  44. G. Gioda and G. Maier, “Direct search solution of an inverse problem in elastoplasticity: identification of cohesion, friction angle and in situ stress by pressure tunnel test,” International Journal for Numerical Methods in Engineering, vol. 15, no. 12, pp. 1823–1848, 1980. View at Google Scholar
  45. A. Cividini, L. Jurina, and G. Gioda, “Some aspects of “characterization ” problems in geomechanics,” International Journal of Rock Mechanics and Mining Sciences and, vol. 18, no. 6, pp. 487–503, 1981. View at Google Scholar
  46. A. Cividini, G. Maier, and A. Nappi, “Parameter estimation of a static geotechnical model usinga Bayes approach,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 20, no. 5, pp. 215–226, 1983. View at Google Scholar
  47. K. Arai, H. Ohta, and T. Yasui, “Simple optimization techniques for evaluating deformation moduli from field observations,” Soils and Foundations, vol. 23, no. 1, pp. 107–113, 1983. View at Google Scholar
  48. K. Arai, H. Ohta, and K. Kojima, “Estimation of soil parameters based on monitored movement of subsoil under consoildation,” Soils and Foundations, vol. 24, no. 4, pp. 95–108, 1984. View at Google Scholar
  49. K. Arai, H. Ohta, K. Kojima, and M. Wakasugi, “Application of back-analysis to several test embankments on soft clay deposits,” Soils and Foundations, vol. 26, no. 2, pp. 60–72, 1986. View at Google Scholar
  50. G. Gioda and S. Sakurai, “Back analysis procedures for the interpretation of field measurementsin geomechanics,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 11, no. 6, pp. 555–583, 1987. View at Google Scholar
  51. M. Shoji, H. Ohta, T. Matsumoto, and S. Morikawa, “Safety control of embankment foundation based on elastic-plastic back analysis,” Soils and Foundations, vol. 29, no. 2, pp. 112–126, 1989. View at Google Scholar
  52. M. Shoji, H. Ohta, K. Arai, T. Matsumoto, and T. Takahashi, “Two-dimensional consolidation back-analysis,” Soils and Foundations, vol. 30, no. 2, pp. 60–78, 1990. View at Google Scholar
  53. A. Anandarajah and D. Agarwal, “Computer-aided calibration of a soil plasticity model,” International Journal for Numerical & Analytical Methods in Geomechanics, vol. 15, no. 12, pp. 835–856, 1991. View at Google Scholar
  54. A. Murakami, T. Hasegawa, and H. Sakaguchi, “Comparison of static and statistical methods for backanalysis of elastic consolidation problems,” in Computer Methods and Advances in Geomechanics, G. Beer, J. R. Booker, and J. P. Carter, Eds., pp. 1011–1015, Balkema, Rotterdam, The Netherlands, 1991. View at Google Scholar
  55. J. V. Beck and K. A. Woodbury, “Inverse problems and parameter estimation: integration of measurements and analysis,” Measurement Science and Technology, vol. 9, no. 6, pp. 839–847, 1998. View at Google Scholar
  56. Z. Xiang, G. Swoboda, and Z. Cen, “Optimal layout of displacement measurements for parameteridentification process in geomechanics,” International Journal of Geomechanics, vol. 3, no. 2, pp. 205–216, 2003. View at Google Scholar
  57. A. Ledesma, A. Gens, and E. E. Alonso, “Comparison of static and statistical methods for backanalysis of elastic consolidation problems,” in Computer Methods and Advances in Geomechanics, G. Beer, J. R. Booker, and J. P. Carter, Eds., pp. 1005–1010, Balkema, Rotterdam, The Netherlands, 1991. View at Google Scholar
  58. Y. Honjo and P. Darmawan, “Prediction of future subsidence with quantified uncertainty by aninverse analysis,” in Proceedings of the 4th International Symposium on Land Subsidence, A. I. Johnson, Ed., pp. 625–634, Houston, Tex, USA, 1991.
  59. A. Ledesma, A. Gens, and E. E. Alonso, “Estimation of parameters in geotechnical backanalysis - I. Maximum likelihood approach,” Computers and Geotechnics, vol. 18, no. 1, pp. 1–27, 1996. View at Publisher · View at Google Scholar
  60. A. Ledesma, A. Gens, and E. E. Alonso, “Parameter and variance estimation in geotechnicalbackanalysis using prior information,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 20, pp. 119–141, 1996. View at Google Scholar
  61. A. Gens, A. Ledesma, and E. E. Alonso, “Estimation of parameters in geotechnical backanalysis - II. Application to a tunnel excavation problem,” Computers and Geotechnics, vol. 18, no. 1, pp. 29–46, 1996. View at Publisher · View at Google Scholar
  62. S. P. Neuman and S. Yakowitz, “A statistical approach to the inverse problem of aquifer hydrology. I. Theory,” Water Resources Research, vol. 15, no. 4, pp. 845–860, 1979. View at Google Scholar
  63. R. L. Cooley, “Incorporation of prior information on parameters into nonlinear regression groundwater flow models. l. Theory,” Water Resources Research, vol. 18, no. 4, pp. 965–976, 1982. View at Google Scholar
  64. Y. Honjo, Liu Wen-Tsung, and S. Guha, “Inverse analysis of an embankment on soft clay by extended Bayesian method,” International Journal for Numerical & Analytical Methods in Geomechanics, vol. 18, no. 10, pp. 709–734, 1994. View at Google Scholar
  65. Y. Honjo, L. Wen-Tsung, and S. Sakajo, “Application of Akaike information criterion statistics to geotechnical inverse analysis: the extended Bayesian method,” Structural Safety, vol. 14, no. 1-2, pp. 5–29, 1994. View at Google Scholar
  66. Y. Sakamoto, M. Ishigro, and G. Kitagawa, Akaike Information Criterion Statistics (Mathematicsand Its Applications), Springer, New York, NY, USA, 1999.
  67. K. Arai, H. Ohta, and M. Miyata, “Comparison of static and statistical methods for backanalysis of elastic consolidation problems,” in Computer Methods and Advances in Geomechanics, G. Beer, J. R. Booker, and J. P. Carter, Eds., pp. 949–951, Balkema, Rotterdam, The Netherlands, 1991. View at Google Scholar
  68. A. Murakami and T. Hasegawa, “Back analysis using Kalman filter-finite elements and optimallocation of observed points,” in Proceedings of the 6th International Conference on Numerical Methods in Geomechanics, Innsbruck, Austria, 1988.
  69. Y. T. Kim and S. R. Lee, “An equivalent model and back-analysis technique for modelling in situ consolidation behavior of drainage-installed soft deposits,” Computers and Geotechnics, vol. 20, no. 2, pp. 125–142, 1997. View at Google Scholar
  70. Y. Zheng, W. Mansheng, H. Liu, Y. Yao, and Z. Xiyuan, “Time-domain identification ofdynamic properties of layered soil by using extended Kalman filter and recorded seismic data,” Earthquake Engineering and Engineering Vibration, vol. 3, no. 2, pp. 237–247, 2004. View at Google Scholar
  71. J. M. Mendel, Lessons in Estimation Theory for Signal Processing, Communications, and Control, Prentice Hall Signal Processing Series, Prentice Hall PTR, Upper Saddle River, NJ, USA, 1995.
  72. D. P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmount, Mass, USA, 2nd edition, 1999.
  73. E. Haber, U. M. Ascher, and D. Oldenburg, “On optimization techniques for solving nonlinear inverse problems,” Inverse Problems, vol. 16, no. 5, pp. 1263–1280, 2000. View at Publisher · View at Google Scholar · View at MathSciNet
  74. D. Yang, G. Li, and G. Cheng, “On the efficiency of chaos optimization algorithms for globaloptimization,” Chaos Solutions and Fractals, vol. 34, pp. 1366–1375, 2007. View at Google Scholar
  75. S. F. Masri, A. W. Smyth, A. G. Chassiakos, M. Nakamura, and T. K. Caughey, “Training neural networks by adaptive random search techniques,” Journal of Engineering Mechanics, vol. 125, no. 2, pp. 123–132, 1999. View at Google Scholar
  76. J. C. Brigham and W. Aquino, “Surrogate-Model Accelerated Random Search algorithm for global optimization with applications to inverse material identification,” Computer Methods in Applied Mechanics and Engineering, vol. 196, no. 45-48, pp. 4561–4576, 2007. View at Publisher · View at Google Scholar
  77. S. Pal, G. W. Wathugala, and S. Kundu, “Calibration of a constitutive model using genetic algorithms,” Computers and Geotechnics, vol. 19, no. 4, pp. 325–348, 1996. View at Publisher · View at Google Scholar
  78. A. A. Javadi, R. Farmani, V. V. Toropov, and C. P. M. Snee, “Identification of parameters for air permeability of shotcrete tunnel lining using a genetic algorithm,” Computers and Geotechnics, vol. 25, no. 1, pp. 1–24, 1999. View at Publisher · View at Google Scholar
  79. W. Gao, X. T. Feng, and Y. R. Zheng, “Identification of a constitutive model for geo-materials using a new intelligent bionics algorithm,” International Journal of Rock Mechanics and Mining Sciences, vol. 41, no. 1, pp. 2–6, 2004. View at Publisher · View at Google Scholar
  80. S. Levasseur, Y. Malécot, M. Boulon, and E. Flavigny, “Soil parameter identification using a genetic algorithm,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 32, no. 2, pp. 189–213, 2008. View at Publisher · View at Google Scholar
  81. Y. Zhang, D. Gallipoli, and C. E. Augarde, “Simulation-based calibration of geotechnical parameters using parallel hybrid moving boundary particle swarm optimization,” Computers and Geotechnics, vol. 36, no. 4, pp. 604–615, 2009. View at Google Scholar
  82. G. E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting and Control, Holden-Day, San Francisco, Calif, USA, 1976.
  83. S. Glaser, “System identification and its application to estimating soil properties,” Journal of Geotechnical Engineering, vol. 121, no. 7, pp. 553–560, 1995. View at Google Scholar
  84. S. D. Glaser and A. L. Leeds, “Estimation of system damping at the lotung site by applicationof system identification,” Tech. Rep. NIST GCR 96-700, Colorado School of Mines, 1996. View at Google Scholar
  85. S. D. Glaser and L. G. Baise, “System identification estimation of soil properties at the Lotung site,” Soil Dynamics and Earthquake Engineering, vol. 19, no. 7, pp. 521–531, 2000. View at Publisher · View at Google Scholar
  86. L. G. Baise, S. D. Glaser, and T. Sugano, “Consistency of dynamic site response at Port Island,” Earthquake Engineering and Structural Dynamics, vol. 30, no. 6, pp. 803–818, 2001. View at Publisher · View at Google Scholar
  87. S. D. Glaser, “Downhole seismic arrays and system identification of soil response,” in Proceedings of the 4th International Conference of Earthquake Engineering, Taipei, Taiwan, 2006.
  88. N. E. Huang, Z. Shen, S. R. Long et al., “The empirical mode decomposition and the Hilbert spectrum for nonlinearand non-stationary time series analysis,” Royal Society of London Proceedings Series A, vol. 454, pp. 903–995, 1998. View at Google Scholar
  89. N. E. Huang, M. C. Wu, S. R. Long et al., “Aconfidence limit for the empirical mode decomposition and Hilbert spectral analysis,” Royal Society of London Proceedings Series A, vol. 459, pp. 2317–2345, 2003. View at Google Scholar
  90. N. E. Huang and N. O. Attoh-Okine, The Hilbert-Huang Transform in Engineering, CRC Press, New York, NY, USA, 1st edition, 2005.
  91. K. T. Coughlin and K. K. Tung, “11-Year solar cycle in the stratosphere extracted by the empirical mode decomposition method,” Advances in Space Research, vol. 34, no. 2, pp. 323–329, 2004. View at Publisher · View at Google Scholar
  92. V. Radić, Z. Pasarić, and N. Šinik, “Analysis of Zagreb climatological data series using empirically decomposed intrinsic mode functions,” Geofizika, vol. 21, pp. 15–36, 2004. View at Google Scholar
  93. R. N. Iyengar and S. T. G. Raghu Kanth, “Intrinsic mode functions and a strategy for forecasting Indian monsoon rainfall,” Meteorology and Atmospheric Physics, vol. 90, no. 1-2, pp. 17–36, 2005. View at Publisher · View at Google Scholar
  94. I. M. Jánosi and R. Müller, “Empirical mode decomposition and correlation properties of long daily ozone records,” Physical Review E, vol. 71, no. 5, Article ID 056126, pp. 1–5, 2005. View at Publisher · View at Google Scholar
  95. K. I. Molla and A. Sumi, “Analysis of temperature change under global warming impact usingempirical mode decomposition,” International Journal of Information Theory, vol. 3, no. 2, 2006. View at Google Scholar
  96. A. J. McDonal, A. J. G. Baumgaertner, S. E. Fraser, and S. Marsh, “Empirical mode decompositionof the atmospheric wave field,” Annales Geophysicae, vol. 25, pp. 375–384, 2007. View at Google Scholar
  97. C.-H. Loh, T.-C. Wu, and N. E. Huang, “Application of the empirical mode decomposition-Hilbert spectrum method to identify near-fault ground-motion characteristics and structural responses,” Bulletin of the Seismological Society of America, vol. 91, no. 5, pp. 1339–1357, 2001. View at Publisher · View at Google Scholar
  98. N. Varadarajan and S. Nagarajaiah, “Response control of building with variable stiffness tunedmass damper using empirical mode decomposition and Hilbert transform algorithm,” in Proceedings of the 16th ASCE Engineering Mechanics Conference, Seattle, Wash, USA, 2003.
  99. J. N. Yang, Y. Lei, S. Pan, and N. E. Huang, “System identification of linear structures basedon Hilbert-Huang spectral analysis. Part 1: normal modes,” Earthquake Engineering and Structural Dynamics, vol. 32, pp. 1443–1467, 2003. View at Google Scholar
  100. J. N. Yang, Y. Lei, S. Pan, and N. E. Huang, “System identification of linear structures basedon Hilbert-Huang spectral analysis. Part 2: complex modes,” Earthquake Engineering and Structural Dynamics, vol. 32, pp. 1533–1554, 2003. View at Google Scholar
  101. Y. L. Xu and J. Chen, “Structural damage detection using empirical mode decomposition: experimental investigation,” Journal of Engineering Mechanics, vol. 130, no. 11, pp. 1279–1288, 2004. View at Publisher · View at Google Scholar
  102. D. Pines and L. Salvino, “Structural health monitoring using empirical mode decomposition and the Hilbert phase,” Journal of Sound and Vibration, vol. 294, no. 1-2, pp. 97–124, 2006. View at Publisher · View at Google Scholar
  103. M. Shahin, M. B. Jaksa, and H. R. Maier, “Artificial neural network applications in geotechnicalengineering,” Australian Geomechanics, 2001. View at Google Scholar
  104. G. Rilling, P. Flandrin, and P. Gonc alves, “On empirical mode decomposition and its algorithms,” in Proceedings of the IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP '03), Grado, Italy, 2003.
  105. E. Deléchelle, J. Lemoine, and O. Niang, “Empirical mode decomposition: an analytical approach for sifting process,” IEEE Signal Processing Letters, vol. 12, no. 11, pp. 764–767, 2005. View at Publisher · View at Google Scholar
  106. L. V. Fausett, Fundamentals of Neural Networks: Architectures, Algorithms and Applications, Prentice Hall, Upper Saddle River, NJ, USA, 1993.
  107. K. Gurney, An Introduction to Neural Networks, University College London Press, 1997.
  108. M. B. Jaksa, H. R. Maier, and M. Shahin, “Future challenges for artificial neural network modeling in geotechnical engineering,” in Proceedings of the 12th International Conference of International Associationfor Computer Methods and Advances in Geomechanics (IACMAG '08), Goa, India, 2008.
  109. A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis, JohnWiley & Sons, New York, NY, USA, 2001.
  110. I. T. Jollife, Principal Component Analysis, Springer Series in Statistics, Springer, New York, NY, USA, 2nd edition, 2002.
  111. G. Kerschen and J. C. Golinval, “Non-linear generalization of principal component analysis: from a global to a local approach,” Journal of Sound and Vibration, vol. 254, no. 5, pp. 867–876, 2002. View at Publisher · View at Google Scholar · View at MathSciNet
  112. G. Kerschen and J. C. Golinval, “Physical interpretation of the proper orthogonal modes using the singular value decomposition,” Journal of Sound and Vibration, vol. 249, no. 5, pp. 849–865, 2003. View at Publisher · View at Google Scholar · View at MathSciNet
  113. F. C. Dai and C. F. Lee, “Terrain-based mapping of landslide susceptibility using a geographical information system: a case study,” Canadian Geotechnical Journal, vol. 38, no. 5, pp. 911–923, 2001. View at Publisher · View at Google Scholar
  114. M. Komac, “A landslide susceptibility model using the Analytical Hierarchy Process method and multivariate statistics in perialpine Slovenia,” Geomorphology, vol. 74, no. 1-4, pp. 17–28, 2006. View at Publisher · View at Google Scholar
  115. D. Folle, G. Raspa, M. Mancini et al., “Geotechnical modelling of the subsoil of Rome (Italy) by means of multivariate geostatics,” in Proceedings of the 11th International Congress of International Association for Mathematical Geology (IAMG '06), Liège, Belgium, 2006.