Table of Contents Author Guidelines Submit a Manuscript
Advances in Civil Engineering
Volume 2012, Article ID 307515, 9 pages
Research Article

Implementation of a Probabilistic Structural Health Monitoring Method on a Highway Bridge

Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269-2037, USA

Received 30 June 2011; Revised 25 October 2011; Accepted 29 December 2011

Academic Editor: Piervincenzo Rizzo

Copyright © 2012 Adam Scianna et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This paper describes the application of a probabilistic structural health monitoring (SHM) method to detect global damage in a highway bridge in Connecticut. The proposed method accounts for the variability associated with environmental and operational conditions. The bridge is a curved three-span steel dual-box girder bridge located in Hartford, Connecticut. The bridge, monitored since Fall 2001, experienced a period of settling in the Winter of 2002-2003. While this change was not associated with structural damage, it was observed in a permanent rotation of the bridge superstructure. Three damage measures are identified in this study: the value of fundamental natural frequency determined from peak picking of autospectral density functions of the bridge acceleration measurements; the magnitude of the peak acceleration measured during a truck crossing; the magnitude of the tilt measured at 10-minute intervals. These damage measures, including thermal effects, are shown to be random variables and associated P values are calculated to determine if the current probability distributions are the same as the distributions of the baseline bridge data from 2001. Historical data measured during the settling of the bridge is used to verify the performance of the bridge, and the field implementation of the proposed method is described.