Table of Contents Author Guidelines Submit a Manuscript
Advances in Civil Engineering
Volume 2012 (2012), Article ID 749540, 9 pages
http://dx.doi.org/10.1155/2012/749540
Research Article

Analytical Model for the End-Bearing Capacity of Tapered Piles Using Cavity Expansion Theory

Department of Civil Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan

Received 2 May 2012; Revised 21 September 2012; Accepted 5 October 2012

Academic Editor: John Mander

Copyright © 2012 Suman Manandhar and Noriyuki Yasufuku. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Manandhar, N. Yasufuku, K. Omine, and T. Kobayashi, “Response of tapered piles in cohesionless soil based on model tests,” Journal of Nepal Geological Society, vol. 40, pp. 85–92, 2010. View at Google Scholar
  2. S. Manandhar, Bearing capacity of tapered piles in sands [Ph.D. thesis], Kyushu University, 2010.
  3. S. Manandhar and N. Yasufuku, “End bearing capacity of tapered piles in sands using cavity expansion theory,” Memoirs of the Faculty of Engineering, Kyushu University, vol. 71, no. 4, pp. 77–99, 2011. View at Google Scholar
  4. A. S Vesic, “Expansion of cavities in infinite soil mass,” Journal of Soil Mechanics and Foundation Engineering, vol. 98, no. 3, pp. 265–290, 1972. View at Google Scholar · View at Scopus
  5. M. M. Baligh, “Cavity expansion in sands with curved envelopes,” Journal of Geotechnical Engineering Division, vol. 102, no. GT11, pp. 1131–1145, 1976. View at Google Scholar
  6. J. M. O. Hughes, C. P. Wroth, and D. Windle, “Pressuremeter tests in sands,” Geotechnique, vol. 27, no. 4, pp. 455–477, 1977. View at Google Scholar · View at Scopus
  7. N. Yasufuku and A. F. L. Hyde, “Pile end-bearing capacity in crushable sands,” Geotechnique, vol. 45, no. 4, pp. 663–676, 1995. View at Google Scholar · View at Scopus
  8. N. Yasufuku, H. Ochiai, and S. Ohno, “Pile end-bearing capacity of sand related to soil compressibility,” Soils and Foundations, vol. 41, no. 4, pp. 59–71, 2001. View at Google Scholar · View at Scopus
  9. Japanese Industrial System A 1224, Japanese Geotechnical Engineering Society, 0161, “The methods and description of soil tests,” First revised version, pp. 59–64.
  10. S. Miura and S. Toki, “A sample preparation method and its effect on static and cyclic deformation-strength properties of sand,” Soils and Foundations, vol. 22, no. 1, pp. 61–77, 1982. View at Google Scholar · View at Scopus
  11. H. Ochiai, “The coefficient of earth pressure at rest of sands,” Domestic Edition of Soils and Foundations, vol. 16, no. 2, pp. 105–111, 1976 (Japanese). View at Google Scholar
  12. N. Yasufuku, H. Ochiai, and Y. Maeda, “Geotechnical analysis of skin friction of cast-in-place piles,” in Proceedings of the 14th International Conference on Soil Mechanics and Foundation Engineering (SMFE '97), pp. 921–924, Hamburg, Germany, 1997.
  13. N. Yasufuku, H. Ochiai, J. M. Kwag, and K. Miyazaki, “Effectiveness of critical state friction angle of volcanic ash soils in design applications,” in Proceedings of the International Symposium on Problematic Soils, vol. 1, pp. 189–193, IS-Tohoku, Sendai, Japan, 1998.
  14. N. Yasufuku, H. Ochiai, and Y. Maeda, “Geotechnical analysis of skin friction of cast-in-place piles related to critical state friction angle,” Journal of Geotechnical Engineering, vol. 617/III-46, pp. 89–100, 1999 (Japanese). View at Google Scholar
  15. M. D. Bolton, “What are partial factor for?” in Proceedings of the International on Limit State Design in Geotecnical Engigeering, vol. 10, pp. 565–583, Danish Geotechnical society for ISSMFE TC23, in DGF Bulletin, Copenhagen, Denmark, 1993.
  16. N. Miura and Yamanouchi, “Effect of particle-crushing on the shear characteristics of sand,” Proceedings of JSCE, vol. 260, pp. 109–118, 1977 (Japanese). View at Google Scholar
  17. N. Miura, “Point resistance of piles in sand,” in Proceedings of the 11th International Conference on Soil Mechanics, vol. 3, pp. 2448–2455, San Franscisco, Calif, USA, 1985.
  18. H. Yamaguchi, “Pile end-bearing capacity based on an elasto-plastic analysis and its application,” Tsuchi-to-Kiso, vol. 23, no. 7, pp. 7–11, 1975 (Japanese). View at Google Scholar
  19. M. Cubrinovski and K. Ishihara, “Empirical correlation between SPT N-value and relative density for sandy soils,” Soils and Foundations, vol. 39, no. 5, pp. 61–71, 1999. View at Google Scholar · View at Scopus
  20. H. Kishida and A. Takano, “Distribution of contact pressure under base of bored piles in sand,” Transaction of Architectural Institute of Japan, Part 1, vol. 260, pp. 21–33, 1977 (Japanese). View at Google Scholar
  21. H. Kishida and A. Takano, “Distribution of contact pressure under base of bored piles in sand,” Transaction of Architectural Institute of Japan, Part 2, vol. 260, pp. 21–33, 1977 (Japanese). View at Google Scholar
  22. H. Hirayama, “Load-settlement analysis for bored piles using hyperbolic transfer functions,” Soils and Foundations, vol. 30, no. 1, pp. 55–64, 1990. View at Google Scholar · View at Scopus
  23. M. Sakr, M. H. El Naggar, and M. Nehdi, “Load transfer of fibre-reinforced polymer (FRP) composite tapered piles in dense sand,” Canadian Geotechnical Journal, vol. 41, no. 1, pp. 70–88, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Sakr, M. H. El Naggar, and M. L. Nehdi, “Uplift performance of FRP tapered piles in dense sand,” International Journal of Physical Modelling in Geotechnics, vol. 2, pp. 1–16, 2005. View at Google Scholar
  25. M. Sakr, M. H. El Naggar, and M. Nehdi, “Wave equation analyses of tapered FRP-concrete piles in dense sand,” Soil Dynamics and Earthquake Engineering, vol. 27, no. 2, pp. 166–182, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A. M. Rybnikov, “Experimental investigations of bearing capacity of bored-cast-in-place tapered piles,” Soil Mechanics and Foundation Engineering, vol. 27, no. 2, pp. 48–52, 1990. View at Publisher · View at Google Scholar · View at Scopus
  27. BCP Committee, “Field tests on piles in sand,” Soils and Foundations, vol. 11, no. 2, pp. 29–50, 1971. View at Google Scholar
  28. Japan Geotechnical Society, “JGS standard for vertical load tests of piles,” JGS, pp. 151–206, 1993 (Japanese). View at Google Scholar