Table of Contents Author Guidelines Submit a Manuscript
Advances in Civil Engineering
Volume 2013, Article ID 275657, 13 pages
http://dx.doi.org/10.1155/2013/275657
Research Article

An Analytical Step-by-Step Procedure to Derive the Flexural Response of RC Sections in Compression

1Dipartimento di Ingegneria Civile, Università di Messina, Contrada Di Dio, 98166 Messina, Italy
2Facoltà di Ingegneria, Architettura e Scienze Motorie, Università Kore di Enna, Cittadella Universitaria, 94100 Enna, Italy
3Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy

Received 6 March 2013; Revised 5 August 2013; Accepted 8 August 2013

Academic Editor: Andreas Kappos

Copyright © 2013 Piero Colajanni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper proposes an analysis procedure able to determine the flexural response of rectangular symmetrically reinforced concrete sections subjected to axial load and uniaxial bending. With respect to the usual numerical approaches, based on the fibre decomposition method, this procedure is based on the use of analytical expressions of the contributions to the equilibrium given by the longitudinal reinforcement and the concrete region in compression, which depend on the neutral axis depth and the curvature at each analysis step. The formulation is developed in dimensionless terms, after a preliminary definition of the geometrical and mechanical parameters involved, so that the results are valid for classes of RC sections. The constitutive laws of the materials include confinement effect on the concrete and postyielding behaviour of the steel reinforcement, which can be assumed to be softening behaviour for buckled reinforcing bars. The strength and curvature domains at the first yielding of the reinforcement in tension and at the ultimate state are derived in the form of analytical curves depending on the compression level; therefore, the role of a single parameter on the shape of these curves can easily be deduced. The procedure is validated by comparing some results with those numerically obtained by other authors.