Table of Contents Author Guidelines Submit a Manuscript
Advances in Civil Engineering
Volume 2013, Article ID 426932, 11 pages
http://dx.doi.org/10.1155/2013/426932
Research Article

Sensitivity Analysis of the Influence of Structural Parameters on Dynamic Behaviour of Highly Redundant Cable-Stayed Bridges

1Department of Civil & Structural Engineering, Faculty of Engineering & Built Environment, National University of Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
2Department of Civil & Structural Engineering, Faculty of Engineering & Built Environment, UTM University of Malaysia, 81310 Skudai, Johor, Malaysia

Received 14 February 2013; Accepted 10 April 2013

Academic Editor: John Mander

Copyright © 2013 B. Asgari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. F. Fleming and E. A. Egeseli, “Dynamic behavior of a cable-stayed bridge,” Earthquake Engineering & Structural Dynamics, vol. 8, no. 1, pp. 1–16, 1980. View at Publisher · View at Google Scholar
  2. A. S. Nazmy and A. M. Abdel-Ghaffar, “Nonlinear earthquake-response analysis of long-span cable-stayed bridges: theory,” Earthquake Engineering & Structural Dynamics, vol. 19, no. 1, pp. 45–62, 1990. View at Google Scholar · View at Scopus
  3. J. C. Wilson and W. Gravelle, “Modeling of a cable-stayed bridge for dynamic analysis,” Earthquake Engineering & Structural Dynamics, vol. 20, no. 8, pp. 707–721, 1991. View at Publisher · View at Google Scholar
  4. W. X. Ren, X. L. Peng, and Y. Q. Lin, “Experimental and analytical studies on dynamic characteristics of a large span cable-stayed bridge,” Engineering Structures, vol. 27, no. 4, pp. 535–548, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. P. H. Wang and C. G. Yang, “Parametric studies on cable-stayed bridges,” Computers & Structures, vol. 60, no. 2, pp. 243–260, 1995. View at Google Scholar
  6. M. I. Friswell and J. E. Mottershead, Finite Element Model Updating in Structural Dynamics, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995.
  7. H. Ahmadian, J. E. Mottershead, and M. I. Friswell, “Regularisation methods for finite element model updating,” Mechanical Systems and Signal Processing, vol. 12, no. 1, pp. 47–64, 1998. View at Google Scholar · View at Scopus
  8. S. Ziaei-Rad and M. Imregun, “On the use of regularization techniques for finite element model updating,” Inverse Problems in Engineering, vol. 7, no. 5, pp. 471–503, 1999. View at Publisher · View at Google Scholar
  9. J. K. Sinha and M. I. Friswell, “Model updating: a tool for reliable modelling, design modification and diagnosis,” The Shock and Vibration Digest, vol. 34, no. 1, pp. 27–35, 2002. View at Google Scholar · View at Scopus
  10. I. Kreja, T. Mikulski, and C. Szymczak, “Adjoint approach sensitivity analysis of thin-walled beams and frames,” Journal of Civil Engineering and Management, vol. 11, no. 1, pp. 57–64, 2005. View at Google Scholar · View at Scopus
  11. R. Baušys, G. Dundulis, R. Kačianauskas et al., “Sensitivity of dynamic behaviour of the FE model: case study for the ignalina NPP reactor building,” Journal of Civil Engineering and Management, vol. 14, no. 2, pp. 121–129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. R. M. Ferreira, “Implications on RC structure performance of model parameter sensitivity: effect of chlorides,” Journal of Civil Engineering and Management, vol. 16, no. 4, pp. 561–566, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Cantieni, “Updating of analytical models of existing large structures based on modal testing,” in Proceedings of the US-Europe Workshop on Bridge Engineering: Evaluation, Management and Repair, pp. 153–177, ASCE, Reston, Va, USA, 1996.
  14. A. Pavic, M. J. Hartley, and P. Waldron, “Updating of the analytical models of two footbridges based on modal testing of full scale structures,” in Proceedings of the 23rd International Seminar on Modal Analysis, pp. 1111–1118, Society for Experimental Mechanics, Bethel, NY, USA, 1998.
  15. K. Mackie and B. Stojadinović, “Probabilistic seismic demand model for California highway bridges,” Journal of Bridge Engineering, vol. 6, no. 6, pp. 468–481, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. Q. W. Zhang, C. C. Chang, and T. Y. P. Chang, “Finite element model updating for structures with parametric constraints,” Earthquake Engineering & Structural Dynamics, vol. 29, no. 7, pp. 927–944, 2000. View at Google Scholar
  17. J. M. W. Brownjohn and P.-Q. Xia, “Dynamic assessment of curved cable-stayed bridge by model updating,” Journal of Structural Engineering, vol. 126, no. 2, pp. 252–260, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. W. E. Daniell and J. H. G. Macdonald, “Improved finite element modelling of a cable-stayed bridge through systematic manual tuning,” Engineering Structures, vol. 29, no. 3, pp. 358–371, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Benedettini and C. Gentile, “Operational modal testing and FE model tuning of a cable-stayed bridge,” Engineering Structures, vol. 33, no. 6, pp. 2063–2073, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. ANSYS, User’s manual, revision12-0-1, Swanson Analysis System, USA, 2009.
  21. A. Wilson, “A critical analysis of Tatara Bridge, Japan,” in Proceedings of Bridge Engineering, p. 37, University of Bath, Bath, UK, April 2009.
  22. R. Karoumi, “Some modeling aspects in the nonlinear finite element analysis of cable supported bridges,” Computers & Structures, vol. 71, no. 4, pp. 397–412, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. A. M. S. Freire, J. H. O. Negrão, and A. V. Lopes, “Geometrical nonlinearities on the static analysis of highly flexible steel cable-stayed bridges,” Computers & Structures, vol. 84, no. 31-32, pp. 2128–2140, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Hu, I. E. Harik, S. W. Smith, J. Gagel, J. E. Campbel, and R. C. Graves, “Baseline modeling of the Owensboro cable-stayed bridge over the Ohio River,” Kentuky Transport System Report KTC-64-04, 2006. View at Google Scholar
  25. Y. Y. Lin and Y. L. Lieu, “Geometrically non-linear analysis of cable-stayed bridges subject to wind excitations,” Journal of the Chinese Institute of Engineers, vol. 26, no. 4, pp. 503–511, 2003. View at Google Scholar · View at Scopus
  26. K. Yamagushi, “Vibration test of Tatara Bridge,” Science Links Japan, vol. 3694, pp. 493–500, 2000. View at Google Scholar
  27. Q. W. Zhang, T. Y. P. Chang, and C. C. Chang, “Finite-element model updating for the Kap Shui Mun cable-stayed bridge,” Journal of Bridge Engineering, vol. 6, no. 4, pp. 285–293, 2001. View at Publisher · View at Google Scholar · View at Scopus