Table of Contents Author Guidelines Submit a Manuscript
Advances in Civil Engineering
Volume 2013, Article ID 580646, 13 pages
http://dx.doi.org/10.1155/2013/580646
Research Article

Bending-Shear Interaction Domains for Externally Prestressed Concrete Girders

1Università di Messina, DICIEAMA, C/da Di Dio, 98166 Messina, Italy
2Università di Palermo, DICAM, Viale delle Scienze, 90128 Palermo, Italy

Received 4 July 2013; Revised 15 September 2013; Accepted 1 October 2013

Academic Editor: Andreas Kappos

Copyright © 2013 Antonino Recupero and Michele Fabio Granata. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. T. K. Au and J. S. Du, “Prediction of ultimate stress in unbonded prestressed tendons,” Magazine of Concrete Research, vol. 56, no. 1, pp. 1–11, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. A. E. Naaman, N. Burns, C. French, W. L. Gamble, and A. H. Mattock, “Stresses in unbonded prestressing tendons at ultimate: recommendation,” ACI Structural Journal, vol. 99, no. 4, pp. 518–529, 2002. View at Google Scholar · View at Scopus
  3. M. Moravcik and I. Dreveny, “Strengthening and verification of the prestressed road bridge using external prestressing,” in Concrete Repair, Rehabilitation and Retrofitting II, M. G. Alexander, H.-D. Beushausen, F. Dehn, and P. Moyo, Eds., pp. 1077–1080, Taylor & Francis, London, UK, 2009. View at Google Scholar
  4. G. Fanti and G. Mancini, “Shear-prestressing interaction in ultimate limit state design,” in Developments in Short and Medium Span Bridge Engineering, Halifax, UK, 1994. View at Google Scholar
  5. P. P. Rossi and A. Recupero, “Ultimate strength of reinforced concrete circular members subjected to axial force, bending moment and shear force,” Journal of Structural Engineering ASCE, vol. 139, no. 6, pp. 915–928, 2013. View at Publisher · View at Google Scholar
  6. A. Recupero, A. D'Aveni, and A. Ghersi, “Bending moment-shear force interaction domains for prestressed concrete beams,” Journal of Structural Engineering, vol. 131, no. 9, pp. 1413–1421, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. J. M. Bairan Garcia and A. R. Mari Bernat, “Coupled model for the non-linear analysis of anisotropic sections subjected to general 3D loading. Part 1: theoretical formulation,” Computers and Structures, vol. 84, no. 31-32, pp. 2254–2263, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. J. M. Bairan Garcia and A. R. Mari, “Coupled model for the nonlinear analysis of sections made of anisotropic materials, subjected to general 3D loading. Part 2: implementation and validation,” Computers and Structures, vol. 84, no. 31-32, pp. 2264–2276, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. J. M. Bairan Garcia and A. R. Mari Bernat, “Shear-bending-torsion interaction in structural concrete members: a nonlinear coupled sectional approach,” Archives of Computational Methods in Engineering, vol. 14, no. 3, pp. 249–278, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. K. N. Rahal, “Combined torsion and bending in reinforced and prestressed concrete beams using simplified method for combined stress-resultants,” ACI Structural Journal, vol. 104, no. 4, pp. 402–411, 2007. View at Google Scholar · View at Scopus
  11. G. Bertagnoli and G. Mancini, “Failure analysis of hollow-core slabs tested in shear,” Structural Concrete, vol. 10, no. 3, pp. 139–152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Russo, G. Zingone, and G. Puleri, “Flexure-shear interaction model for longitudinally reinforced beams,” ACI Structural Journal, vol. 88, no. 1, pp. 60–68, 1991. View at Google Scholar · View at Scopus
  13. G. Russo and G. Puleri, “Stirrup effectiveness in reinforced concrete beams under flexure and shear,” ACI Structural Journal, vol. 94, no. 3, pp. 227–238, 1997. View at Google Scholar · View at Scopus
  14. A. Recupero, A. D'Aveni, and A. Ghersi, “N-M-V interaction domains for box and I-shaped reinforced concrete members,” ACI Structural Journal, vol. 100, no. 1, pp. 113–119, 2003. View at Google Scholar · View at Scopus
  15. P. E. Regan and H. Rezai-Jorabi, “The Shear resistance of reinforced concrete I-beams,” in Studi e Ricerche, Politecnico di Milano, vol. 9, pp. 305–321, Milan, Italy, 1987. View at Google Scholar
  16. J. R. Robinson and J. M. Demorieux, “Essais de Poutres en double té en Béton Armé,” Annales de l'Institut Technique du Bâtiment et des Travaux Publics, vol. 153, pp. 66–91, 1976. View at Google Scholar
  17. K.-H. Tan and C.-K. Ng, “Effect of shear in externally prestressed beams,” ACI Structural Journal, vol. 95, no. 2, pp. 116–128, 1998. View at Google Scholar · View at Scopus
  18. M. W. Braestrup, M. P. Nielsen, and F. Bach, “Rational analysis of Shear in reinforced concrete beams,” in Proceedings of the International Association for Bridge and Structural Engineering (IABSE '78), 1978.
  19. “Fib, Bulletin d’Information 65—Model Code 2010—Final draft, Volumes 1 and 2, fib, Lausanne, Switzerland, 2012”.
  20. ACI, “ACI 445R-99 Recent Approaches to Shear Design of Structural Concrete,” Reported by Joint ACI-ASCE Committee 445. Manual of concrete practice, pp. 1-55, 1999.
  21. P. Colajanni, A. Recupero, and N. Spinella, “Generalization of shear truss model to the case of SFRC beams with stirrups,” Computers & Concrete, vol. 9, no. 3, pp. 227–244, 2012. View at Google Scholar · View at Scopus
  22. N. Spinella, P. Colajanni, and A. Recupero, “Simple plastic model for shear critical SFRC beams,” Journal of Structural Engineering, vol. 136, no. 4, pp. 390–400, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Bertagnoli, G. Mancini, A. Recupero, and N. Spinella, “Rotating compression field model for reinforced concrete beams under prevalent shear actions,” Structural Concrete, vol. 12, no. 3, pp. 178–186, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Bertagnoli and V. I. Carbone, “A finite element formulation for concrete structures in plane stress,” Structural Concrete, vol. 9, no. 2, pp. 87–99, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Perez and H. Corres, “Influence of construction sequence in prestressed concrete bridges,” in Proceedings of the 5th International RILEM Symposium on Creep and Shrinkage of Concrete, Barcelona, Spain, 1993.
  26. M. F. Granata and M. Arici, “Serviceability of segmental concrete arch-frame bridges built by cantilevering,” Bridge Structures, vol. 9, no. 1, pp. 21–36, 2013. View at Google Scholar
  27. M. Arici and M. F. Granata, “Analysis of curved incrementally launched box concrete bridges using Transfer Matrix Method,” Bridge Structures, vol. 3, no. 3-4, pp. 165–181, 2007. View at Google Scholar
  28. M. F. Granata, P. Margiotta, and M. Arici, “A parametric study of curved incrementally launched bridges,” Engineering Structures, vol. 49, pp. 373–384, 2013. View at Publisher · View at Google Scholar
  29. M. F. Granata, P. Margiotta, and M. Arici, “A simplified procedure for evaluating the effects of creep and shrinkage on prestressed concrete girder bridges and the application of European and North American prediction models,” Journal of Bridge Engineering ASCE, vol. 18, no. 12, pp. 1281–1297, 2013. View at Publisher · View at Google Scholar
  30. M. F. Granata, P. Margiotta, A. Recupero, and M. Arici, “Partial elastic scheme method in cantilever construction of concrete arch bridges,” Journal of Bridge Engineering ASCE, vol. 18, no. 7, pp. 663–672, 2013. View at Publisher · View at Google Scholar
  31. M. F. Granata, P. Margiotta, A. Recupero, and M. Arici, “Concrete arch bridges built by lattice cantilevers,” Structural Engineering and Mechanics, vol. 45, no. 5, pp. 703–722, 2013. View at Google Scholar
  32. M. W. Braestrup, “Structural concrete beam Shear—still a riddle?” ACI Special Publication, vol. 15, pp. 327–344, 2009. View at Google Scholar
  33. CEB, Bulletin d’Information n° 213/214—CEB-FIP Model code 1990, Thomas Telford, London, UK, 1993.
  34. CEN, EN 1992-1-1 Eurocode 2—Design of Concrete Structures—Part 1.1: General Rules and Rules for Buildings, 2005.